
AMBA® AXI Protocol
Specification

Document number ARM IHI 0022

Document quality EAC

Document version Issue K

Document confidentiality Non-confidential

Date of issue September 2023

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

i

AMBA® AXI Protocol Specification

Release information

Date Version Changes

2023/Sep/29 K • EAC-0 release of Issue K.
• Memory Encryption Contexts (MEC).
• Memory System Resource Partitioning and Monitoring (MPAM) extension.
• Memory Tagging Extension (MTE) Simplified option.
• Other minor additions, corrections, and clarifications.

2023/Mar/01 J • EAC-0 release of Issue J.
• Simplified document structure.
• AXI3, AXI4, AXI4-Lite, ACE, and ACE5 content removed.
• New content added for AXI5, AXI5-Lite, ACE5-Lite, ACE5-LiteDVM, and

ACE5-LiteACP interface classes.

2021/Jan/26 H.c • Corrected error in table D13-22 for AxADDR[15].

2021/Jan/11 H.b • Regularized terminology to use Manager to indicate the agent that initiates read
and write requests and Subordinate to indicate the agent that responds to read and
write requests.

2020/Mar/31 H • EAC-0 release of Issue H.
• New optional features defined for AMBA 5 interface variants.

2019/Jul/30 G • EAC-0 release of Issue G.
• New optional features defined for AMBA 5 interface variants.

2017/Dec/21 F.b • EAC-1 release to address issues found with the EAC-0 release of release F.

2017/Dec/18 F • EAC-0 release of Issue F.
• New interfaces defined for AMBA protocol: AXI5, AXI5-Lite, ACE5,

ACE5-Lite, ACE5-LiteDVM, and ACE5-LiteACP.

2013/Feb/22 E • Second release of AMBA AXI and ACE Protocol specification.

2011/Oct/28 D • First release of AMBA AXI and ACE Protocol specification.

2011/Jun/03 D-2c • Public beta draft of AMBA AXI and ACE Protocol specification.

2010/Mar/03 C • First release of AXI specification v2.0.

2004/Mar/19 B • First release of AXI specification v1.0.

2003/Jun/16 A • First release.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ii

Proprietary Notice

This document is NON-CONFIDENTIAL and any use by you is subject to the terms of this notice and the Arm AMBA
Specification Licence set about below.

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be
the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/
policies/trademarks

Copyright © 2003-2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-21451 version 2.2

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

AMBA SPECIFICATION LICENCE

THIS END USER LICENCE AGREEMENT (“LICENCE”) IS A LEGAL AGREEMENT BETWEEN YOU (EITHER A
SINGLE INDIVIDUAL, OR SINGLE LEGAL ENTITY) AND ARM LIMITED (“ARM”) FOR THE USE OF ARM’S
INTELLECTUAL PROPERTY (INCLUDING, WITHOUT LIMITATION, ANY COPYRIGHT) IN THE RELEVANT AMBA
SPECIFICATION ACCOMPANYING THIS LICENCE. ARM LICENSES THE RELEVANT AMBA SPECIFICATION TO
YOU ON CONDITION THAT YOU ACCEPT ALL OF THE TERMS IN THIS LICENCE. BY CLICKING “I AGREE” OR
OTHERWISE USING OR COPYING THE RELEVANT AMBA SPECIFICATION YOU INDICATE THAT YOU AGREE TO
BE BOUND BY ALL THE TERMS OF THIS LICENCE.

“LICENSEE” means You and your Subsidiaries. “Subsidiary” means, if You are a single entity, any company the majority of
whose voting shares is now or hereafter owned or controlled, directly or indirectly, by You. A company shall be a Subsidiary only
for the period during which such control exists.

1. Subject to the provisions of Clauses 2, 3 and 4, Arm hereby grants to LICENSEE a perpetual, non-exclusive,
non-transferable, royalty free, worldwide licence to:

(i) use and copy the relevant AMBA Specification for the purpose of developing and having developed products that
comply with the relevant AMBA Specification;

(ii) manufacture and have manufactured products which either: (a) have been created by or for LICENSEE under the
licence granted in Clause 1(i); or (b) incorporate a product(s) which has been created by a third party(s) under a
licence granted by Arm in Clause 1(i) of such third party’s AMBA Specification Licence; and

(iii) offer to sell, sell, supply or otherwise distribute products which have either been (a) created by or for LICENSEE
under the licence granted in Clause 1(i); or (b) manufactured by or for LICENSEE under the licence granted in
Clause 1(ii).

2. LICENSEE hereby agrees that the licence granted in Clause 1 is subject to the following restrictions:

(i) where a product created under Clause 1(i) is an integrated circuit which includes a CPU then either: (a) such CPU
shall only be manufactured under licence from Arm; or (b) such CPU is neither substantially compliant with nor
marketed as being compliant with the Arm instruction sets licensed by Arm from time to time;

(ii) the licences granted in Clause 1(iii) shall not extend to any portion or function of a product that is not itself compliant
with part of the relevant AMBA Specification; and

(iii) no right is granted to LICENSEE to sublicense the rights granted to LICENSEE under this Agreement.

3. Except as specifically licensed in accordance with Clause 1, LICENSEE acquires no right, title or interest in any Arm
technology or any intellectual property embodied therein. In no event shall the licences granted in accordance with Clause
1 be construed as granting LICENSEE, expressly or by implication, estoppel or otherwise, a licence to use any Arm
technology except the relevant AMBA Specification.

4. THE RELEVANT AMBA SPECIFICATION IS PROVIDED “AS IS” WITH NO REPRESENTATION OR
WARRANTIES EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF
SATISFACTORY QUALITY, MERCHANTABILITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE, OR THAT ANY USE OR IMPLEMENTATION OF SUCH ARM TECHNOLOGY WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY
RIGHTS.

5. NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS AGREEMENT, TO THE FULLEST
EXTENT PETMITTED BY LAW, THE MAXIMUM LIABILITY OF ARM IN AGGREGATE FOR ALL CLAIMS MADE
AGAINST ARM, IN CONTRACT, TORT OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF
THIS AGREEMENT (INCLUDING WITHOUT LIMITATION (I) LICENSEE’S USE OF THE ARM TECHNOLOGY;
AND (II) THE IMPLEMENTATION OF THE ARM TECHNOLOGY IN ANY PRODUCT CREATED BY LICENSEE
UNDER THIS AGREEMENT) SHALL NOT EXCEED THE FEES PAID (IF ANY) BY LICENSEE TO ARM UNDER
THIS AGREEMENT. THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND
THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN
EXCESS OF THIS LIMITATION.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

6. No licence, express, implied or otherwise, is granted to LICENSEE, under the provisions of Clause 1, to use the Arm
tradename, or AMBA trademark in connection with the relevant AMBA Specification or any products based thereon.
Nothing in Clause 1 shall be construed as authority for LICENSEE to make any representations on behalf of Arm in respect
of the relevant AMBA Specification.

7. This Licence shall remain in force until terminated by you or by Arm. Without prejudice to any of its other rights
if LICENSEE is in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence
immediately upon giving written notice to You. You may terminate this Licence at any time. Upon expiry or termination of
this Licence by You or by Arm LICENSEE shall stop using the relevant AMBA Specification and destroy all copies of the
relevant AMBA Specification in your possession together with all documentation and related materials. Upon expiry or
termination of this Licence, the provisions of clauses 6 and 7 shall survive.

8. The validity, construction and performance of this Agreement shall be governed by English Law.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.

Arm strives to lead the industry and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms. If you find offensive terms
in this document, please contact terms@arm.com.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

http://www.arm.com
mailto:terms@arm.com

Contents

AMBA® AXI Protocol Specification

AMBA® AXI Protocol Specification . ii
Release information . ii
Proprietary Notice . iii
AMBA SPECIFICATION LICENCE . iv
Confidentiality Status . v
Product Status . v
Web Address . v
Inclusive language commitment . v

Preface
Intended audience . xiii
Using this specification . xiii

Conventions . xv
Typographical conventions . xv
Timing diagrams . xv
Signals . xvi
Numbers . xvi
Pseudocode descriptions . xvi

Additional reading . xvii
Feedback . xviii

Feedback on this specification . xviii

Part A Specification

Chapter A1 Introduction
A1.1 About the AXI protocol . 21
A1.2 AXI Architecture . 22

A1.2.1 Channel definition . 23
A1.2.2 Interface and interconnect . 24
A1.2.3 Register slices . 25

A1.3 Terminology . 26
A1.3.1 AXI components and topology . 26
A1.3.2 AXI transactions and transfers . 26
A1.3.3 Caches and cache operation . 26
A1.3.4 Temporal description . 26

Chapter A2 Signal list
A2.1 Write channels . 28

A2.1.1 Write request channel . 28
A2.1.2 Write data channel . 29
A2.1.3 Write response channel . 30

A2.2 Read channels . 31
A2.2.1 Read request channel . 31
A2.2.2 Read data channel . 32

A2.3 Snoop channels . 33
A2.3.1 Snoop request channel . 33
A2.3.2 Snoop response channel . 33

A2.4 Interface level signals . 34

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

Contents

A2.4.1 Clock and reset signals . 34
A2.4.2 Wakeup signals . 34
A2.4.3 QoS Accept signals . 34
A2.4.4 Coherency Connection signals . 35
A2.4.5 Interface control signals . 35

Chapter A3 AXI Transport
A3.1 Clock and reset . 37

A3.1.1 Clock . 37
A3.1.2 Reset . 37

A3.2 Channel handshake . 38
A3.3 Write and read channels . 40

A3.3.1 Write request channel (AW) . 40
A3.3.2 Write data channel (W) . 40
A3.3.3 Write response channel (B) . 41
A3.3.4 Read request channel (AR) . 41
A3.3.5 Read data channel (R) . 42

A3.4 Relationships between the channels . 43
A3.5 Dependencies between channel handshake signals 44

A3.5.1 Write transaction dependencies . 44
A3.5.2 Read transaction dependencies . 44

A3.6 Snoop channels . 46
A3.6.1 Snoop request channel (AC) . 46
A3.6.2 Snoop response channel (CR) . 46
A3.6.3 Snoop transaction dependencies . 47

Chapter A4 AXI Transactions
A4.1 Transaction request . 49

A4.1.1 Size attribute . 49
A4.1.2 Length attribute . 50
A4.1.3 Maximum number of bytes in a transaction 51
A4.1.4 Burst attribute . 51
A4.1.5 Transfer address . 54
A4.1.6 Transaction equations . 54
A4.1.7 Pseudocode description of the transfers 56
A4.1.8 Regular transactions . 57

A4.2 Write and read data . 58
A4.2.1 Write strobes . 58
A4.2.2 Narrow transfers . 58
A4.2.3 Byte invariance . 59
A4.2.4 Unaligned transfers . 61

A4.3 Transaction response . 65
A4.3.1 Write response . 65
A4.3.2 Read response . 66
A4.3.3 Subordinate Busy indicator . 68

Chapter A5 Request attributes
A5.1 Subordinate types . 71
A5.2 Memory Attributes . 72

A5.2.1 Bufferable, AxCACHE[0] . 72
A5.2.2 Modifiable, AxCACHE[1] . 73
A5.2.3 Allocate and Other Allocate, AxCACHE[2], and AxCACHE[3] 74

A5.3 Memory types . 75
A5.3.1 Memory type requirements . 75
A5.3.2 Mismatched memory attributes . 78

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vii

Contents

A5.3.3 Changing memory attributes . 78
A5.3.4 Transaction buffering . 78
A5.3.5 Example use of Device memory types 79

A5.4 Protocol errors . 81
A5.4.1 Software protocol error . 81
A5.4.2 Hardware protocol error . 81

A5.5 Memory protection and the Realm Management Extension 82
A5.6 Memory Encryption Contexts . 84

A5.6.1 MEC signaling . 84
A5.6.2 MECID usage . 85

A5.7 Multiple region interfaces . 87
A5.7.1 Region identifier signaling . 87
A5.7.2 Using the region identifier . 87

A5.8 QoS signaling . 89
A5.8.1 QoS identifiers . 89
A5.8.2 QoS acceptance indicators . 90

Chapter A6 Transaction identifiers and ordering
A6.1 Transaction identifiers . 93

A6.1.1 Transaction ID signals . 93
A6.2 Unique ID indicator . 94
A6.3 Request ordering . 96

A6.3.1 Memory locations and Peripheral regions 96
A6.3.2 Device and Normal requests . 97
A6.3.3 Observation and completion definitions 97
A6.3.4 Manager ordering guarantees . 97
A6.3.5 Subordinate ordering requirements . 98
A6.3.6 Interconnect ordering requirements . 99
A6.3.7 Response before the endpoint . 99
A6.3.8 Ordering between requests with different memory types 100
A6.3.9 Ordered write observation . 101

A6.4 Interconnect use of transaction identifiers . 102
A6.5 Write data and response ordering . 103
A6.6 Read data ordering . 104

A6.6.1 Read data interleaving . 104
A6.6.2 Read data chunking . 105

Chapter A7 Atomic accesses
A7.1 Single-copy atomicity size . 111
A7.2 Multi-copy write atomicity . 112
A7.3 Exclusive accesses . 113

A7.3.1 Exclusive access sequence . 113
A7.3.2 Exclusive access from the perspective of the Manager 114
A7.3.3 Exclusive access restrictions . 114
A7.3.4 Exclusive access from the perspective of the Subordinate 115

A7.4 Atomic transactions . 116
A7.4.1 Overview . 116
A7.4.2 Atomic transaction operations . 117
A7.4.3 Atomic transactions attributes . 117
A7.4.4 ID use for Atomic transactions . 119
A7.4.5 Request attribute restrictions for Atomic transactions 119
A7.4.6 Atomic transaction signaling . 120
A7.4.7 Transaction structure . 121
A7.4.8 Response signaling . 122
A7.4.9 Atomic transaction dependencies . 122

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

viii

Contents

A7.4.10 Support for Atomic transactions . 123

Chapter A8 Request Opcodes
A8.1 Opcode signaling . 126
A8.2 AWSNOOP encodings . 128
A8.3 ARSNOOP encodings . 131

Chapter A9 Caches
A9.1 Caching in AXI . 134
A9.2 Cache line size . 135
A9.3 Cache coherency and Domains . 137

A9.3.1 System Domain . 137
A9.3.2 Non-shareable Domain . 137
A9.3.3 Shareable Domain . 137
A9.3.4 Domain signaling . 138
A9.3.5 Domain consistency . 139
A9.3.6 Domains and memory types . 139

A9.4 I/O coherency . 140
A9.5 Caching Shareable lines . 141

A9.5.1 Opcodes to support reading and writing full cache lines 142
A9.5.2 Configuration of Shareable cache support 143

A9.6 Prefetch transaction . 145
A9.6.1 Rules for the prefetch transaction . 145
A9.6.2 Response for prefetched data . 146

A9.7 Cache Stashing . 147
A9.7.1 Stash transaction Opcodes . 147
A9.7.2 Stash transaction signaling . 148
A9.7.3 Stash request Domain . 148
A9.7.4 Stash target identifiers . 149
A9.7.5 Transaction ID for stash transactions 150
A9.7.6 Support for stash transactions . 151

A9.8 Deallocating read transactions . 152
A9.8.1 Deallocating read Opcodes . 152
A9.8.2 Rules and recommendations . 152

A9.9 Invalidate hint . 154
A9.9.1 Invalidate Hint signaling . 154
A9.9.2 Invalidate Hint support . 155

Chapter A10 Cache maintenance
A10.1 Cache Maintenance Operations . 157
A10.2 Actions on receiving a CMO . 158
A10.3 CMO request attributes . 159
A10.4 CMO propagation . 160
A10.5 CMOs on the write channels . 161
A10.6 Write with CMO . 163

A10.6.1 Attributes for write with CMO . 164
A10.6.2 Propagation of write with CMO . 164
A10.6.3 Response to write with CMOs . 164
A10.6.4 Example flow with a write plus CMO . 165

A10.7 CMOs on the read channels . 166
A10.8 CMOs for Persistence . 167

A10.8.1 Point of Persistence and Deep Persistence 167
A10.8.2 Persistent CMO (PCMO) transactions 167
A10.8.3 PCMO propagation . 168
A10.8.4 PCMOs on write channels . 168

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ix

Contents

A10.8.5 PCMOs on read channels . 170
A10.9 Cache Maintenance and Realm Management Extension 171

A10.9.1 CMO to PoPA . 171
A10.9.2 CMO to PoPA propagation . 172

A10.10 Processor cache maintenance instructions . 173
A10.10.1 Unpredictable behavior with software cache maintenance 173

Chapter A11 Additional request qualifiers
A11.1 Non-secure Access Identifiers (NSAID) . 176

A11.1.1 NSAID signaling . 176
A11.1.2 Caching and NSAID . 177

A11.2 Page-based Hardware Attributes (PBHA) . 178
A11.2.1 PBHA values . 178

A11.3 Subsystem Identifier . 179
A11.3.1 Subsystem ID usage . 179

Chapter A12 Other write transactions
A12.1 WriteZero Transaction . 181
A12.2 WriteDeferrable Transaction . 182

A12.2.1 WriteDeferrable transaction support . 182
A12.2.2 WriteDeferrable signaling . 182
A12.2.3 Response to a WriteDeferrable request 183

Chapter A13 System monitoring, debug, and user extensions
A13.1 Memory System Resource Partitioning and Monitoring (MPAM) 185

A13.1.1 MPAM signaling . 185
A13.1.2 MPAM fields . 186
A13.1.3 MPAM component interactions . 187

A13.2 Memory Tagging Extension (MTE) . 188
A13.2.1 MTE support . 188
A13.2.2 MTE signaling . 189
A13.2.3 Caching tags . 189
A13.2.4 Transporting tags . 190
A13.2.5 Reads with tags . 191
A13.2.6 Writes with tags . 192
A13.2.7 Memory tagging interoperability . 195
A13.2.8 MTE and Atomic transactions . 195
A13.2.9 MTE and Prefetch transactions . 196
A13.2.10 MTE and Poison . 196

A13.3 Trace signals . 197
A13.4 User Loopback signaling . 198
A13.5 User defined signaling . 200

A13.5.1 Configuration . 200
A13.5.2 User signals . 200
A13.5.3 Usage considerations . 201

Chapter A14 Untranslated Transactions
A14.1 Introduction to Distributed Virtual Memory . 203
A14.2 Support for untranslated transactions . 204
A14.3 Untranslated transaction signaling . 205
A14.4 Translation identifiers . 206

A14.4.1 Secure Stream Identifier (SECSID) . 206
A14.4.2 StreamID (SID) . 207
A14.4.3 SubstreamID (SSID) . 207
A14.4.4 PCIe considerations . 207

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

x

Contents

A14.5 Translation fault flows . 208
A14.5.1 Stall flow . 209
A14.5.2 ATST flow . 209
A14.5.3 NoStall flow . 209
A14.5.4 PRI flow . 210

A14.6 Untranslated transaction qualifier . 211
A14.7 StashTranslation Opcode . 212
A14.8 UnstashTranslation Opcode . 213

Chapter A15 Distributed Virtual Memory messages
A15.1 Introduction to DVM transactions . 215
A15.2 Support for DVM messages . 216
A15.3 DVM messages . 217

A15.3.1 DVM message fields . 217
A15.3.2 TLB Invalidate messages . 222
A15.3.3 Branch Predictor Invalidate messages 226
A15.3.4 Instruction cache invalidations . 227
A15.3.5 Synchronization message . 229
A15.3.6 Hint message . 229

A15.4 Transporting DVM messages . 230
A15.4.1 Signaling for DVM messages . 230
A15.4.2 Address widths in DVM messages . 232
A15.4.3 Mapping message fields to signals . 232

A15.5 DVM Sync and Complete . 239
A15.6 Coherency Connection signaling . 241

A15.6.1 Coherency Connection Handshake . 241

Chapter A16 Wake-up signaling
A16.1 About Wake-up signals . 245
A16.2 AWAKEUP rules and recommendations . 246

A16.2.1 AWAKEUP and Coherency Connection signaling 246
A16.3 ACWAKEUP rules and recommendations . 247

Chapter A17 Interface and data protection
A17.1 Data protection using Poison . 249
A17.2 Parity protection for data and interface signals 250

A17.2.1 Configuration of parity protection . 250
A17.2.2 Error detection behavior . 251
A17.2.3 Parity check signals . 251

Part B Appendices

Chapter B1 Interface classes
B1.1 Summary of interface classes . 258

B1.1.1 AXI5 . 259
B1.1.2 ACE5-Lite . 259
B1.1.3 ACE5-LiteDVM . 259
B1.1.4 ACE5-LiteACP . 260
B1.1.5 AXI5-Lite . 260

B1.2 Signal matrix . 261
B1.3 Parity check signal matrix . 266
B1.4 Property matrix . 269

Chapter B2 Summary of ID constraints

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xi

Contents
Contents

Chapter B3 Revisions
B3.1 Differences between Issue H.c and Issue J . 274
B3.2 Differences between Issue J and Issue K . 276

Part C Glossary

Chapter C1 Glossary

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xii

Preface

This preface describes the content organization and documentation conventions used in this specification.

Intended audience

This specification is written for hardware and software engineers who want to become familiar with the AMBA
protocol and design systems and modules that are compatible with the AXI protocol.

Using this specification

The information in this specification is organized into parts, as described in this section:

Part A Specification

Chapter A1 Introduction

Introduces the AXI protocol architecture and terminology used in this specification.

Chapter A2 Signal list

A list of all the signals that are defined in the AXI protocol.

Chapter A3 AXI Transport

Provides information on the basic operations of the AXI protocol, such as read and write transactions,
channel signaling requirements, and relationships between channels.

Chapter A4 AXI Transactions

Contains information on the AXI protocol transactions, such as transaction request, transaction
response, and read and write data.

Chapter A5 Request attributes

Describes memory attributes, memory types, memory protection, and multiple region interfaces.

Chapter A6 Transaction identifiers and ordering

Describes transaction ID signals, request ordering, write data and response ordering, and read data
ordering.

Chapter A7 Atomic accesses

Contains information on Atomic accesses, single and multi-copy atomicity, and exclusive accesses.

Chapter A8 Request Opcodes

Provides information on the opcode field that describes the function of a request and indicates how it
must be processed by a Subordinate.

Chapter A9 Caches

Describes caching in the AXI protocol, including I/O coherency, caching shareable lines, and managing
cache allocation using specific transactions.

Chapter A10 Cache maintenance

Provides information on using cache maintenance operations to control cache content ensuring
visibility of data.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiii

Preface

Chapter A11 Additional request qualifiers

Describes additional request qualifiers in the AXI protocol, such as Non-secure Access Identifier
(NSAID), Page-based Hardware Attributes (PBHA), and Subsystem Identifier.

Chapter A12 Other write transactions

Contains information on other write transactions in the AXI protocol, such as WriteDeferrable and
WriteZero.

Chapter A13 System monitoring, debug, and user extensions

Describes system debug, trace, and monitoring features of the AXI protocol, such as Memory System
Resource Partitioning and Monitoring (MPAM), Memory Tagging Extension (MTE), and User
Loopback and User defined signaling.

Chapter A14 Untranslated Transactions

Describes how AXI supports the use of virtual addresses and translation stash hints for components
upstream of a System Memory Management Unit (SMMU).

Chapter A15 Distributed Virtual Memory messages

Describes how AXI supports distributed system MMUs using Distributed Virtual Memory (DVM)
messages to maintain all MMUs in a virtual memory system.

Chapter A16 Wake-up signaling

Describes wake-up signals which can be used for interface clock or power control.

Chapter A17 Interface and data protection

Explains how to protect data or interfaces using poison and parity check signals.

Part B Appendices

Chapter B1 Interface classes

Descriptions of all the AMBA 5 AXI interface classes, including signal and property tables.

Chapter B2 Summary of ID constraints

A summary of ID constraints in the AXI protocol.

Chapter B3 Revisions

Details of the changes between this issue and the previous issue of this specification.

Part C Glossary

Chapter C1 Glossary

Learn about the AXI protocol terms and concepts.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiv

Conventions

Typographical conventions

The typographical conventions are:

italic

Highlights important notes, introduces special terminology, and denotes internal cross-references and
citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings.

Colored text

Indicates a link. This can be:

• A cross-reference that includes the page number of the referenced information if it is not on the current page.
• A URL, for example http://developer.arm.com.
• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that defines the

colored term.

Timing diagrams

The components used in timing diagrams are explained in Figure 1. Variations have clear labels when they occur.
Do not assume any timing information that is not explicit in the diagrams.

t0 t1 t2

CLOCK

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

Figure 1: Key to timing diagram conventions

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xv

http://developer.arm.com

Preface
Conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and they look similar to
the bus change shown in Figure 1. If a timing diagram shows a single-bit signal in this way, then its value does not
affect the accompanying description.

Signals

The signal conventions are:

• Signal level - The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:

– HIGH for active-HIGH signals.

– LOW for active-LOW signals.

• Lowercase n - At the start or end of a signal name denotes an active-LOW signal.

• Lowercase x - At the second letter of a signal name denotes a collective term for both Read and Write. For
example, AxCACHE refers to both the ARCACHE and AWCACHE signals.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for
example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This specification uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font. The pseudocode language is described in the Arm® Architecture
Reference Manual for A-profile architecture.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xvi

Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer, http://developer.arm.com for access to Arm documentation.

[1] AMBA® AXI and ACE Protocol Specification. (ARM IHI 0022 H.c).

[2] AMBA® AXI Protocol Specification. (ARM IHI 0022 J).

[3] Arm® Architecture Reference Manual for A-profile architecture. (ARM DDI 0487).

[4] Arm® Realm Management Extension (RME) System Architecture. (ARM DEN 0129).

[5] AMBA® 5 CHI Architecture Specification. (ARM IHI 0050).

[6] Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring
(MPAM), for A-profile architecture. (ARM DDI 0598).

[7] Arm® System Memory Management Unit Architecture Specification, SMMU architecture version 3. (ARM IHI
0070).

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xvii

http://developer.arm.com

Feedback

Arm welcomes feedback on its documentation.

Feedback on this specification

If you have any comments or suggestions for additions and improvements, create a ticket at
https://support.developer.arm.com. As part of the ticket, please include:

• The title (AMBA® AXI Protocol Specification).
• The number (ARM IHI 0022 Issue K).
• The page numbers to which your comments apply.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xviii

https://support.developer.arm.com

Part A
Specification

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xix

Chapter A1
Introduction

This chapter introduces the architecture of the AXI protocol and the terminology used in this specification.

It contains the following sections:

• A1.1 About the AXI protocol

• A1.2 AXI Architecture

• A1.3 Terminology

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

20

Chapter A1. Introduction
A1.1. About the AXI protocol

A1.1 About the AXI protocol

The AXI protocol supports high-performance, high-frequency system designs for communication between
Manager and Subordinate components.

The AXI protocol features are:

• Suitable for high-bandwidth and low-latency designs.

• High-frequency operation is provided without using complex bridges.

• The protocol meets the interface requirements of a wide range of components.

• Suitable for memory controllers with high initial access latency.

• Flexibility in the implementation of interconnect architectures is provided.

• Backward-compatible with AHB and APB interfaces.

The key features of the AXI protocol are:

• Separate address/control and data phases.

• Support for unaligned data transfers using byte strobes.

• Uses burst-based transactions with only the start address issued.

• Separate write and read data channels that can provide low-cost Direct Memory Access (DMA).

• Support for issuing multiple outstanding addresses.

• Support for out-of-order transaction completion.

• Permits easy addition of register stages to provide timing closure.

For the previous issues of this specification, see [1] and [2].

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

21

Chapter A1. Introduction
A1.2. AXI Architecture

A1.2 AXI Architecture

The AXI protocol is transactions-based and defines five independent channels:

• Write request, which has signal names beginning with AW.

• Write data, which has signal names beginning with W.

• Write response, which has signal names beginning with B.

• Read request, which has signal names beginning with AR.

• Read data, which has signal names beginning with R.

A request channel carries control information that describes the nature of the data to be transferred. This is known
as a request.

The data is transferred between Manager and Subordinate using either:

• A write data channel to transfer data from the Manager to the Subordinate. In a write transaction, the
Subordinate uses the write response channel to signal the completion of the transfer to the Manager.

• A read data channel to transfer data from the Subordinate to the Manager.

The AXI protocol:

• Permits address information to be issued ahead of the actual data transfer.

• Supports multiple outstanding transactions.

• Supports out-of-order completion of transactions.

Figure A1.1 shows how a write transaction uses the write request, write data, and write response channels.

Manager
interface

Subordinate
interface

Address and
control

Write request channel

Write
data

Write data channel

Write
data

Write
data

Write
data

Write
response

Write response channel

Figure A1.1: Channel architecture of writes

Figure A1.2 shows how a read transaction uses the read request and read data channels.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

22

Chapter A1. Introduction
A1.2. AXI Architecture

Manager
interface

Address and
control

 Read request channel

Read
data and
response

Read
data and
response

Read
data and
response

Read
data and
response

Read data channel

Subordinate
interface

Figure A1.2: Channel architecture of reads

A1.2.1 Channel definition

Each of the five independent channels consists of a set of information signals and VALID and READY signals
that provide a two-way handshake mechanism.

The information source uses the VALID signal to show when valid address, data, or control information is
available on the channel. The destination uses the READY signal to show when it can accept the information.
Both the read data channel and the write data channel also include a LAST signal to indicate the transfer of the
final data item in a transaction.

A1.2.1.1 Write and read request channels

There are separate write and read request channels. The appropriate request channel carries all the required
address and control information for a transaction.

A1.2.1.2 Write data channel

The write data channel carries the write data from the Manager to the Subordinate and includes:

• The data signal, WDATA which can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide. The width is
indicated using the DATA_WIDTH property.

• A byte lane strobe signal for every eight data bits, indicating the bytes of the data that are valid.

Write data channel information is always treated as buffered, so that the Manager can perform write transactions
without Subordinate acknowledgment of previous write transactions.

A1.2.1.3 Write response channel

A Subordinate uses the write response channel to respond to write transactions. All write transactions require
completion signaling on the write response channel.

As Figure A1.1 shows, completion is signaled only for a complete transaction, not for each data transfer in a
transaction.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

23

Chapter A1. Introduction
A1.2. AXI Architecture

A1.2.1.4 Read data channel

The read data channel carries both the read data and the read response information from the Subordinate to the
Manager and includes:

• The data signal, RDATA which can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide. The width is indicated
using the DATA_WIDTH property.

• A read response signal indicating the completion status of the read transaction.

A1.2.2 Interface and interconnect

A typical system consists of several Manager and Subordinate devices that are connected together through some
form of interconnect, as Figure A1.3 shows.

Interconnect

Interface

Manager 2Manager 1 Manager 3

Interface

Subordinate 1 Subordinate 2 Subordinate 3 Subordinate 4

Figure A1.3: Interface and interconnect

The AXI protocol provides a single interface definition for the interfaces between:

• A Manager and the interconnect

• A Subordinate and the interconnect

• A Manager and a Subordinate

This interface definition supports many different interconnect implementations.

An interconnect between devices is equivalent to another device with symmetrical Manager and Subordinate ports
that the real Manager and Subordinate devices can be connected.

A1.2.2.1 Typical system topologies

Most systems use one of three interconnect topologies:

• Shared request and data channels

• Shared request channel and multiple data channels

• Multilayer, with multiple request and data channels

In most systems, the request channel bandwidth requirement is significantly less than the data channel bandwidth
requirement. Such systems can achieve a good balance between system performance and interconnect complexity
by using a shared request channel with multiple data channels to enable parallel data transfers.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

24

Chapter A1. Introduction
A1.2. AXI Architecture

A1.2.3 Register slices

Each AXI channel transfers information in only one direction, and the architecture does not require any fixed
relationship between the channels. These qualities mean that a register slice can be inserted at almost any point in
any channel at the cost of an additional cycle of latency.

These qualities make the following possible:

• Trade-off between cycles of latency and maximum frequency of operation.

• Direct, fast connection between a processor and high-performance memory, while using simple register
slices to isolate longer paths to less performance critical peripherals.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

25

Chapter A1. Introduction
A1.3. Terminology

A1.3 Terminology

This section summarizes terms that are used in this specification, and are defined in Chapter C1 Glossary, or
elsewhere. Where appropriate, terms that are listed in this section link to the corresponding glossary definition.

A1.3.1 AXI components and topology

The following terms describe AXI components:

• Component

• Manager Component

• Subordinate Component, which includes Memory Subordinate component and Peripheral Subordinate
component

• Interconnect Component

For a particular AXI transaction, Upstream and Downstream refer to the relative positions of AXI components
within the AXI topology.

A1.3.2 AXI transactions and transfers

An AXI transfer is the communication in one cycle on an AXI channel.

An AXI transaction is the set of transfers required for an AXI Manager to communicate with an AXI Subordinate.
For example, a read transaction consists of a request transfer and one or more read data transfers.

A1.3.3 Caches and cache operation

This specification does not define standard cache terminology that is defined in any reference work on caching.

However, the glossary entries for Cache and Cache line clarify how these terms are used in this document.

A1.3.4 Temporal description

The AXI specification uses the term in a timely manner.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

26

Chapter A2
Signal list

This chapter lists all the signals described within this specification. Some channels and signals are optional, so are
not included on every interface. Each signal name contains a hyperlink to the section in which the signal is defined.

Parity check signals are not included in this chapter but are listed in A17.2.3 Parity check signals.

Signals are grouped based on channel and category as described in the following sections:

• A2.1 Write channels

• A2.2 Read channels

• A2.3 Snoop channels

• A2.4 Interface level signals

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

27

Chapter A2. Signal list
A2.1. Write channels

A2.1 Write channels

The write channels are used to transfer requests, data, and responses for write transactions and some other
data-less transactions.

A2.1.1 Write request channel

The write request channel carries all the required address and control information for transactions that use the
write channels. Signals on this channel have the prefix AW.

Table A2.1: Write request channel signals

Name Width Source Description

AWVALID 1 Manager Valid indicator

AWREADY 1 Subordinate Ready indicator

AWID ID_W_WIDTH Manager Transaction identifier for the write channels

AWADDR ADDR_WIDTH Manager Transaction address

AWREGION 4 Manager Region identifier

AWLEN 8 Manager Transaction length

AWSIZE 3 Manager Transaction size

AWBURST 2 Manager Burst attribute

AWLOCK 1 Manager Exclusive access indicator

AWCACHE 4 Manager Memory attributes

AWPROT 3 Manager Access attributes

AWNSE 1 Manager Non-secure extension bit for RME

AWQOS 4 Manager QoS identifier

AWUSER USER_REQ_WIDTH Manager User-defined extension to a request

AWDOMAIN 2 Manager Shareability domain of a request

AWSNOOP AWSNOOP_WIDTH Manager Write request opcode

AWSTASHNID 11 Manager Stash Node ID

AWSTASHNIDEN 1 Manager Stash Node ID enable

AWSTASHLPID 5 Manager Stash Logical Processor ID

AWSTASHLPIDEN 1 Manager Stash Logical Processor ID enable

AWTRACE 1 Manager Trace signal

AWLOOP LOOP_W_WIDTH Manager Loopback signals on the write channels

AWMMUVALID 1 Manager MMU signal qualifier

AWMMUSECSID SECSID_WIDTH Manager Secure Stream ID

AWMMUSID SID_WIDTH Manager StreamID

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

28

Chapter A2. Signal list
A2.1. Write channels

Table A2.1 – Continued from previous page

Name Width Source Description

AWMMUSSIDV 1 Manager SubstreamID valid

AWMMUSSID SSID_WIDTH Manager SubstreamID

AWMMUATST 1 Manager Address translated indicator

AWMMUFLOW 2 Manager SMMU flow type

AWPBHA 4 Manager Page-based Hardware Attributes

AWNSAID 4 Manager Non-secure Access ID

AWSUBSYSID SUBSYSID_WIDTH Manager Subsystem ID

AWATOP 6 Manager Atomic transaction opcode

AWMPAM MPAM_WIDTH Manager MPAM information with a request

AWIDUNQ 1 Manager Unique ID indicator

AWCMO AWCMO_WIDTH Manager CMO type

AWTAGOP 2 Manager Memory Tag operation for write requests

AWMECID MECID_WIDTH Manager Memory Encryption Context identifier

A2.1.2 Write data channel

The write data channel carries write data and control information from a Manager to a Subordinate. Signals on this
channel have the prefix W.

Table A2.2: Write data channel signals

Name Width Source Description

WVALID 1 Manager Valid indicator

WREADY 1 Subordinate Ready indicator

WDATA DATA_WIDTH Manager Write data

WSTRB DATA_WIDTH / 8 Manager Write data strobes

WTAG ceil(DATA_WIDTH/128)*4 Manager Memory Tag

WTAGUPDATE ceil(DATA_WIDTH/128) Manager Memory Tag update

WLAST 1 Manager Last write data

WUSER USER_DATA_WIDTH Manager User-defined extension to write data

WPOISON ceil(DATA_WIDTH / 64) Manager Poison indicator

WTRACE 1 Manager Trace signal

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

29

Chapter A2. Signal list
A2.1. Write channels

A2.1.3 Write response channel

The write response channel carries responses from Subordinate to Manager for transactions using the write data
channels. Signals on this channel have the prefix B.

Table A2.3: Write response channel signals

Name Width Source Description

BVALID 1 Subordinate Valid indicator

BREADY 1 Manager Ready indicator

BID ID_W_WIDTH Subordinate Transaction identifier for the write channels

BIDUNQ 1 Subordinate Unique ID indicator

BRESP BRESP_WIDTH Subordinate Write response

BCOMP 1 Subordinate Completion response indicator

BPERSIST 1 Subordinate Persist response

BTAGMATCH 2 Subordinate Memory Tag Match response

BUSER USER_RESP_WIDTH Subordinate User-defined extension to a write response

BTRACE 1 Subordinate Trace signal

BLOOP LOOP_W_WIDTH Subordinate Loopback signals on the write channels

BBUSY 2 Subordinate Busy indicator

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

30

Chapter A2. Signal list
A2.2. Read channels

A2.2 Read channels

The read channels are used to transfer requests, data, and responses for read transactions, cache maintenance
operations, and DVM Complete messages.

A2.2.1 Read request channel

The read request channel carries all the required address and control information for transactions that use the read
channels. Signals on this channel have the prefix AR.

Table A2.4: Read request channel signals

Name Width Source Description

ARVALID 1 Manager Valid indicator

ARREADY 1 Subordinate Ready indicator

ARID ID_R_WIDTH Manager Transaction identifier for the read channels

ARADDR ADDR_WIDTH Manager Transaction address

ARREGION 4 Manager Region identifier

ARLEN 8 Manager Transaction length

ARSIZE 3 Manager Transaction size

ARBURST 2 Manager Burst attribute

ARLOCK 1 Manager Exclusive access indicator

ARCACHE 4 Manager Memory attributes

ARPROT 3 Manager Access attributes

ARNSE 1 Manager Non-secure extension bit for RME

ARQOS 4 Manager QoS identifier

ARUSER USER_REQ_WIDTH Manager User-defined extension to a request

ARDOMAIN 2 Manager Shareability domain of a request

ARSNOOP ARSNOOP_WIDTH Manager Read request opcode

ARTRACE 1 Manager Trace signal

ARLOOP LOOP_R_WIDTH Manager Loopback signals on the read channels

ARMMUVALID 1 Manager MMU signal qualifier

ARMMUSECSID SECSID_WIDTH Manager Secure Stream ID

ARMMUSID SID_WIDTH Manager StreamID

ARMMUSSIDV 1 Manager SubstreamID valid

ARMMUSSID SSID_WIDTH Manager SubstreamID

ARMMUATST 1 Manager Address translated indicator

ARMMUFLOW 2 Manager SMMU flow type

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

31

Chapter A2. Signal list
A2.2. Read channels

Table A2.4 – Continued from previous page

Name Width Source Description

ARPBHA 4 Manager Page-based Hardware Attributes

ARNSAID 4 Manager Non-secure Access ID

ARSUBSYSID SUBSYSID_WIDTH Manager Subsystem ID

ARMPAM MPAM_WIDTH Manager MPAM information with a request

ARCHUNKEN 1 Manager Read data chunking enable

ARIDUNQ 1 Manager Unique ID indicator

ARTAGOP 2 Manager Memory Tag operation for read requests

ARMECID MECID_WIDTH Manager Memory Encryption Context identifier

A2.2.2 Read data channel

The read data channel carries read data and responses from a Subordinate to a Manager. Signals on this channel
have the prefix R.

Table A2.5: Read data channel signals

Name Width Source Description

RVALID 1 Subordinate Valid indicator

RREADY 1 Manager Ready indicator

RID ID_R_WIDTH Subordinate Transaction identifier for the read channels

RIDUNQ 1 Subordinate Unique ID indicator

RDATA DATA_WIDTH Subordinate Read data

RTAG ceil(DATA_WIDTH/128)*4 Subordinate Memory Tag

RRESP RRESP_WIDTH Subordinate Read response

RLAST 1 Subordinate Last read data

RUSER USER_DATA_WIDTH +
USER_RESP_WIDTH

Subordinate User-defined extension to read data and
response

RPOISON ceil(DATA_WIDTH / 64) Subordinate Poison indicator

RTRACE 1 Subordinate Trace signal

RLOOP LOOP_R_WIDTH Subordinate Loopback signals on the read channels

RCHUNKV 1 Subordinate Read data chunking valid

RCHUNKNUM RCHUNKNUM_WIDTH Subordinate Read data chunk number

RCHUNKSTRB RCHUNKSTRB_WIDTH Subordinate Read data chunk strobe

RBUSY 2 Subordinate Busy indicator

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

32

Chapter A2. Signal list
A2.3. Snoop channels

A2.3 Snoop channels

In this specification, the snoop channels are only used to transport DVM messages.

A2.3.1 Snoop request channel

The snoop request channel carries address and control information for DVM message requests. Signals on this
channel have the prefix AC.

Table A2.6: Snoop request channel signals

Name Width Source Description

ACVALID 1 Subordinate Valid indicator

ACREADY 1 Manager Ready indicator

ACADDR ADDR_WIDTH Subordinate DVM message payload

ACVMIDEXT 4 Subordinate VMID extension for DVM messages

ACTRACE 1 Subordinate Trace signal

A2.3.2 Snoop response channel

The snoop response channel carries responses to DVM messages. Signals on this channel have the prefix CR.

Table A2.7: Snoop response channel signals

Name Width Source Description

CRVALID 1 Manager Valid indicator

CRREADY 1 Subordinate Ready indicator

CRTRACE 1 Manager Trace signal

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33

Chapter A2. Signal list
A2.4. Interface level signals

A2.4 Interface level signals

Interface level signals are non-channel signals. There can be up to one set of each per interface.

A2.4.1 Clock and reset signals

All signals on an interface are synchronous to a global clock and are reset using a global reset signal.

Table A2.8: Clock and reset signals

Name Width Source Description

ACLK 1 External Global clock signal

ARESETn 1 External Global reset signal

A2.4.2 Wakeup signals

The wake-up signals are used to indicate that there is activity associated with the interface.

Table A2.9: Wake-up signals

Name Width Source Description

AWAKEUP 1 Manager Wake-up signal associated with read and write channels

ACWAKEUP 1 Subordinate Wake-up signal associated with snoop channels

A2.4.3 QoS Accept signals

QoS Accept signals can be used by a Subordinate interface to indicate the minimum QoS value of requests that it
accepts.

Table A2.10: QoS Accept signals

Name Width Source Description

VAWQOSACCEPT 4 Subordinate QoS acceptance level for write requests

VARQOSACCEPT 4 Subordinate QoS acceptance level for read requests

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

34

Chapter A2. Signal list
A2.4. Interface level signals

A2.4.4 Coherency Connection signals

The coherency connection signals are used by a Manager to control whether it receives DVM messages on the AC
channel.

Table A2.11: Coherency connection signals

Name Width Source Description

SYSCOREQ 1 Manager Coherency connect request

SYSCOACK 1 Subordinate Coherency connect acknowledge

A2.4.5 Interface control signals

The interface control signals are static inputs to a Manager interface that can be used to configure interface
behavior.

Table A2.12: Interface control signals

Name Width Source Description

BROADCASTATOMIC 1 Tie-off Control input for Atomic transactions

BROADCASTSHAREABLE 1 Tie-off Control input for Shareable transactions

BROADCASTCACHEMAINT 1 Tie-off Control input for cache maintenance operations

BROADCASTCMOPOPA 1 Tie-off Control input for the CleanInvalidPoPA CMO

BROADCASTPERSIST 1 Tie-off Control input for CleanSharedPersist and
CleanSharedDeepPersist

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

35

Chapter A3
AXI Transport

This chapter describes the channel transport used in AXI.

It contains the following sections:

• A3.1 Clock and reset

• A3.2 Channel handshake

• A3.3 Write and read channels

• A3.4 Relationships between the channels

• A3.5 Dependencies between channel handshake signals

• A3.6 Snoop channels

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36

Chapter A3. AXI Transport
A3.1. Clock and reset

A3.1 Clock and reset

This section describes the requirements for implementing the AXI global clock and reset signals ACLK and
ARESETn.

A3.1.1 Clock

Each AXI interface has a single clock signal, ACLK. All input signals are sampled on the rising edge of ACLK.
All output signal changes can only occur after the rising edge of ACLK.

On Manager and Subordinate interfaces, there must be no combinatorial paths between input and output signals.

A3.1.2 Reset

The AXI protocol uses a single active-LOW reset signal, ARESETn. The reset signal can be asserted
asynchronously, but deassertion can only be synchronous with a rising edge of ACLK.

During reset the following interface requirements apply:

• A Manager interface must drive AWVALID, WVALID, and ARVALID LOW.

• A Subordinate interface must drive BVALID and RVALID LOW.

• All other signals can be driven to any value.

The earliest point after reset that a Manager is permitted to begin driving AWVALID, WVALID, or ARVALID
HIGH is at a rising ACLK edge after ARESETn is HIGH. Figure A3.1 shows the earliest point b after reset that
AWVALID, WVALID, or ARVALID, can be driven HIGH.

ACLK

ARESETn

VALID

a

b

Figure A3.1: Exit from reset

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

Chapter A3. AXI Transport
A3.2. Channel handshake

A3.2 Channel handshake

All AXI channels use the same VALID/READY handshake process to transfer address, data, and control
information. This two-way flow control mechanism means both the Manager and Subordinate can control the rate
that the information moves between Manager and Subordinate. The source generates the VALID signal to indicate
when the address, data, or control information is available. The destination generates the READY signal to
indicate that it can accept the information. Transfer occurs only when both the VALID and READY signals are
HIGH.

On Manager and Subordinate interfaces, there must be no combinatorial paths between input and output signals.
Figure A3.2 to Figure A3.4 show examples of the handshake process.

The source presents information after edge 1 and asserts the VALID signal as shown in Figure A3.2. The
destination asserts the READY signal after edge 2. The source must keep its information stable until the transfer
occurs at edge 3, when this assertion is recognized.

0 1 2 3 4

ACLK

INFORMATION

VALID

READY

Figure A3.2: VALID before READY handshake

A source is not permitted to wait until READY is asserted before asserting VALID.

When VALID is asserted, it must remain asserted until the handshake occurs, at a rising clock edge when VALID
and READY are both asserted.

In Figure A3.3 the destination asserts READY after edge 1, before the address, data, or control information is
valid. This assertion indicates that it can accept the information. The source presents the information and asserts
VALID after edge 2, then the transfer occurs at edge 3, when this assertion is recognized. In this case, transfer
occurs in a single cycle.

0 1 2 3 4

ACLK

INFORMATION

VALID

READY

Figure A3.3: READY before VALID handshake

A destination is permitted to wait for VALID to be asserted before asserting the corresponding READY.

If READY is asserted, it is permitted to deassert READY before VALID is asserted.

In Figure A3.4, both the source and destination happen to indicate that they can transfer the address, data, or
control information after edge 1. In this case, the transfer occurs at the rising clock edge when the assertion of
both VALID and READY can be recognized. These assertions mean that the transfer occurs at edge 2.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

Chapter A3. AXI Transport
A3.2. Channel handshake

0 1 2 3 4

ACLK

INFORMATION

VALID

READY

Figure A3.4: VALID with READY handshake

The individual AXI channel handshake mechanisms are described in A3.4 Relationships between the channels.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39

Chapter A3. AXI Transport
A3.3. Write and read channels

A3.3 Write and read channels

This section describes the AXI write and read channels. The channels are:

• A3.3.1 Write request channel (AW)

• A3.3.2 Write data channel (W)

• A3.3.3 Write response channel (B)

• A3.3.4 Read request channel (AR)

• A3.3.5 Read data channel (R)

For interfaces that use A15.3 DVM messages, there are two additional channels:

• A3.6.1 Snoop request channel (AC)

• A3.6.2 Snoop response channel (CR)

A3.3.1 Write request channel (AW)

The control signals for the write request channel are shown in Table A3.1.

Table A3.1: Write request channel control signals

Name Width Source Description

AWVALID 1 Manager Write request valid indicator.

AWREADY 1 Subordinate Write request ready indicator.

The Manager can assert the AWVALID signal only when it drives a valid request. When asserted, AWVALID
must remain asserted until the rising clock edge after the Subordinate asserts AWREADY.

The default state of AWREADY can be either HIGH or LOW. It is recommended to use HIGH as the default state
for AWREADY. When AWREADY is HIGH, the Subordinate must be able to accept any valid request that is
presented to it.

It is not recommended to default AWREADY LOW because it forces the transfer to take at least two cycles, one
to assert AWVALID and another to assert AWREADY.

A3.3.2 Write data channel (W)

The control signals for the write data channel are shown in Table A3.2.

Table A3.2: Write data channel control signals

Name Width Source Description

WVALID 1 Manager Write data valid indicator.

WREADY 1 Subordinate Write data ready indicator.

WLAST 1 Manager Indicates the last write data transfer of a
transaction.

During a write transaction, the Manager can assert the WVALID signal only when it drives valid write data. When

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40

Chapter A3. AXI Transport
A3.3. Write and read channels

asserted, WVALID must remain asserted until the rising clock edge after the Subordinate asserts WREADY.

The default state of WREADY can be HIGH, but only if the Subordinate can always accept write data in a single
cycle.

The Manager must assert the WLAST signal while it is driving the final write transfer in the transaction.

It is recommended that WDATA is driven to zero for inactive byte lanes.

A Subordinate that does not use WLAST can omit the input from its interface.

The property WLAST_Present is used to determine if the WLAST signal is present.

Table A3.3: WLAST_Present property

WLAST_Present Default Description

True Y WLAST is present.

False WLAST is not present.

A3.3.3 Write response channel (B)

The control signals for the write response channel are shown in Table A3.4.

Table A3.4: Write response channel control signals

Name Width Source Description

BVALID 1 Subordinate Write response valid indicator.

BREADY 1 Manager Write response ready indicator.

The Subordinate can assert the BVALID signal only when it drives a valid write response. When asserted,
BVALID must remain asserted until the rising clock edge after the Manager asserts BREADY.

The default state of BREADY can be HIGH, but only if the Manager can always accept a write response in a
single cycle.

A3.3.4 Read request channel (AR)

The control signals for the read request channel are shown in Table A3.5.

Table A3.5: Read request channel control signals

Name Width Source Description

ARVALID 1 Manager Read request valid indicator.

ARREADY 1 Subordinate Read request ready indicator.

The Manager can assert the ARVALID signal only when it drives a valid request. When asserted, ARVALID
must remain asserted until the rising clock edge after the Subordinate asserts the ARREADY signal.

The default state of ARREADY can be either HIGH or LOW. It is recommended to use HIGH as the default state
for ARREADY. If ARREADY is HIGH, then the Subordinate must be able to accept any valid request that is
presented to it.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41

Chapter A3. AXI Transport
A3.3. Write and read channels

It is not recommended to default ARREADY LOW because it forces the transfer to take at least two cycles, one to
assert ARVALID and another to assert ARREADY.

A3.3.5 Read data channel (R)

The control signals for the read data channel are shown in Table A3.6.

Table A3.6: Read data channel control signals

Name Width Source Description

RVALID 1 Subordinate Read data valid indicator.

RREADY 1 Manager Read data ready indicator.

RLAST 1 Subordinate Indicates the last read data transfer of a
transaction.

The Subordinate can assert the RVALID signal only when it drives valid signals on the read data channel. When
asserted, RVALID must remain asserted until the rising clock edge after the Manager asserts RREADY. Even if a
Subordinate has only one source of read data, it must assert the RVALID signal only in response to a request.

The Manager interface uses the RREADY signal to indicate that it accepts the data. The default state of RREADY
can be HIGH, but only if the Manager is able to accept read data immediately when it starts a read transaction.

The Subordinate must assert the RLAST signal when it is driving the final read transfer in the transaction.

It is recommended that RDATA is driven to zero for inactive byte lanes.

A Manager that does not use RLAST can omit the input from its interface.

The property RLAST_Present is used to determine if the RLAST signal is present.

Table A3.7: RLAST_Present property

RLAST_Present Default Description

True Y RLAST is present.

False RLAST is not present.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

Chapter A3. AXI Transport
A3.4. Relationships between the channels

A3.4 Relationships between the channels

The AXI protocol requires the following relationships to be maintained:

• A write response must always follow the last write transfer in a write transaction.

• Read data and responses must always follow the read request.

• Channel handshakes must conform to the dependencies defined in A3.5 Dependencies between channel
handshake signals.

• When a Manager issues a write request, it must be able to provide all write data for that transaction, without
dependency on other transactions from that Manager.

• When a Manager has issued a write request and all write data, it must be able to accept all responses for that
transaction, without dependency on other transactions from that Manager.

• When a Manager has issued a read request, it must be able to accept all read data for that transaction, without
dependency on other transactions from that Manager.

– Note that a Manager can rely on read data returning in order from transactions that use the same ID, so
the Manager only needs enough storage for read data from transactions with different IDs.

• A Manager is permitted to wait for one transaction to complete before issuing another transaction request.

• A Subordinate is permitted to wait for one transaction to complete before accepting or issuing transfers for
another transaction.

• A Subordinate must not block acceptance of data-less write requests due to transactions with leading write
data.

The protocol does not define any other relationship between the channels.

The lack of relationship means, for example, that the write data can appear at an interface before the write request
for the transaction. This can occur if the write request channel contains more register stages than the write data
channel. Similarly, the write data might appear in the same cycle as the request.

When the interconnect is required to determine the destination address space or Subordinate space, it must realign
the request and write data. This realignment is required to assure that the write data is signaled as being valid only
to the Subordinate that it is destined for.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43

Chapter A3. AXI Transport
A3.5. Dependencies between channel handshake signals

A3.5 Dependencies between channel handshake signals

There are dependencies between channels for write, read, and snoop transactions. These are described in the
sections below and include dependency diagrams, where:

• Single-headed arrows point to signals that can be asserted before or after the signal at the start of the arrow.

• Double-headed arrows point to signals that must be asserted only after assertion of the signal at the start of
the arrow.

A3.5.1 Write transaction dependencies

For transactions on the write channels, Figure A3.5 shows the handshake signal dependencies. The rules are:

• The Manager must not wait for the Subordinate to assert AWREADY or WREADY before asserting
AWVALID or WVALID. This applies to every write data transfer in a transaction.

• The Subordinate can wait for AWVALID or WVALID, or both, before asserting AWREADY.

• The Subordinate can assert AWREADY before AWVALID or WVALID, or both, are asserted.

• The Subordinate can wait for AWVALID or WVALID, or both, before asserting WREADY.

• The Subordinate can assert WREADY before AWVALID or WVALID, or both, are asserted.

• The Subordinate must wait for AWVALID, AWREADY, WVALID, and WREADY to be asserted before
asserting BVALID.

• The Subordinate must also wait for WLAST to be asserted before asserting BVALID. This wait is because
the write response, BRESP, must be signaled only after the last data transfer of a write transaction.

• The Subordinate must not wait for the Manager to assert BREADY before asserting BVALID.

• The Manager can wait for BVALID before asserting BREADY.

• The Manager can assert BREADY before BVALID is asserted.

WREADY

AWVALID

AWREADY

WVALID BVALID

BREADY

Figure A3.5: Write transaction handshake dependencies

A3.5.2 Read transaction dependencies

For transactions on the read channels, Figure A3.6 shows the handshake signal dependencies. The rules are:

• The Manager must not wait for the Subordinate to assert ARREADY before asserting ARVALID.

• The Subordinate can wait for ARVALID to be asserted before it asserts ARREADY.

• The Subordinate can assert ARREADY before ARVALID is asserted.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

44

Chapter A3. AXI Transport
A3.5. Dependencies between channel handshake signals

• The Subordinate must wait for both ARVALID and ARREADY to be asserted before it asserts RVALID to
indicate that valid data is available.

• The Subordinate must not wait for the Manager to assert RREADY before asserting RVALID.

• The Manager can wait for RVALID to be asserted before it asserts RREADY.

• The Manager can assert RREADY before RVALID is asserted.

ARREADY RREADY

ARVALID RVALID

Figure A3.6: Read transaction handshake dependencies

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

45

Chapter A3. AXI Transport
A3.6. Snoop channels

A3.6 Snoop channels

DVM messages are transported between interconnect and Manager components using snoop channels. When
DVM messages are supported, there is a snoop request channel (AC) and snoop response channel (CR).

A3.6.1 Snoop request channel (AC)

The control signals for the snoop request channel are shown in Table A3.8.

Table A3.8: Snoop request channel control signals

Name Width Source Description

ACVALID 1 Subordinate Snoop request valid indicator.

ACREADY 1 Manager Snoop request ready indicator.

A Subordinate can assert the ACVALID signal only when it drives valid address and control information. When
asserted, ACVALID must remain asserted until the rising clock edge after the Manager asserts the ACREADY
signal.

The default state of ACREADY can be either HIGH or LOW. It is recommended to use HIGH as the default state
for ACREADY. If ACREADY is HIGH, then the Manager must be able to accept any valid request that is
presented to it.

It is not recommended to default ACREADY LOW because it forces the transfer to take at least two cycles, one to
assert ACVALID and another to assert ACREADY.

A3.6.2 Snoop response channel (CR)

The control signals for the snoop response channel are shown in Table A3.9.

Table A3.9: Snoop response channel control signals

Name Width Source Description

CRVALID 1 Manager Snoop response valid indicator.

CRREADY 1 Subordinate Snoop response ready indicator.

The Manager can assert the CRVALID signal only when it drives valid signals on the snoop response channel.
When asserted, CRVALID must remain asserted until the rising clock edge after the Subordinate asserts
CRREADY.

The Subordinate interface uses the CRREADY signal to indicate that it accepts the response. The default state of
CRREADY can be HIGH, but only if the Subordinate is able to accept the snoop response immediately when it
starts a snoop transaction.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46

Chapter A3. AXI Transport
A3.6. Snoop channels

A3.6.3 Snoop transaction dependencies

For transactions on the snoop channels, Figure A15.2 shows the handshake signal dependencies. The rules are:

• The Subordinate must not wait for the Manager to assert ACREADY before asserting ACVALID.

• The Manager can wait for ACVALID to be asserted before it asserts ACREADY.

• The Manager can assert ACREADY before ACVALID is asserted.

• The Manager must wait for both ACVALID and ACREADY to be asserted before it asserts CRVALID to
indicate that a valid response is available.

• The Manager must not wait for the Subordinate to assert CRREADY before asserting CRVALID.

• The Subordinate can wait for CRVALID to be asserted before it asserts CRREADY.

• The Subordinate can assert CRREADY before CRVALID is asserted.

ACREADY CRREADY

ACVALID CRVALID

Figure A3.7: Snoop transaction handshake dependencies

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

47

Chapter A4
AXI Transactions

The AXI protocol uses transactions for communication between Managers and Subordinates. All transactions
include a request and a response. Write and read transactions also include one or more data transfers.

This chapter describes the transaction requests, responses, and data transfers.

It contains the following sections:

• A4.1 Transaction request

• A4.2 Write and read data

• A4.3 Transaction response

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48

Chapter A4. AXI Transactions
A4.1. Transaction request

A4.1 Transaction request

An AXI Manager initiates a transaction by issuing a request to a Subordinate. A request includes transaction
attributes and the address of the first data transfer. If the transaction includes more than one data transfer, the
Subordinate must calculate the addresses of subsequent transfers.

A transaction must not cross a 4KB address boundary. This prevents a transaction from crossing a boundary
between two Subordinates. It also limits the number of address increments that a Subordinate must support.

A4.1.1 Size attribute

Size indicates the maximum number of bytes in each data transfer.

For read transactions, Size indicates how many data bytes must be valid in each read data transfer.

For write transactions, Size indicates how many data byte lanes are permitted to be active. The write strobes
indicate which of those bytes are valid in each transfer.

Size must not exceed the data width of an interface, as determined by the DATA_WIDTH property.

If Size is smaller than DATA_WIDTH, a subset of byte lanes is used for each transfer.

Size is communicated using the AWSIZE and ARSIZE signals on the write request and read request channels,
respectively. In this specification, AxSIZE indicates AWSIZE and ARSIZE.

Table A4.1: AxSIZE signals

Name Width Default Description

AWSIZE,
ARSIZE

3 DATA_WIDTH/8 Indicates the maximum number of bytes in
each data transfer within a transaction.

Size is encoded on the AxSIZE signals as shown in Table A4.2.

Table A4.2: AxSIZE encodings

AxSIZE Label Meaning

0b000 1 1 byte per transfer

0b001 2 2 bytes per transfer

0b010 4 4 bytes per transfer

0b011 8 8 bytes per transfer

0b100 16 16 bytes per transfer

0b101 32 32 bytes per transfer

0b110 64 64 bytes per transfer

0b111 128 128 bytes per transfer

The property SIZE_Present is used to determine if the AxSIZE signals are present.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49

Chapter A4. AXI Transactions
A4.1. Transaction request

Table A4.3: SIZE_Present property

SIZE_Present Default Description

True Y AWSIZE and ARSIZE are present.

False AWSIZE and ARSIZE are not present.

A Manager that only issues requests of full data width can omit the AxSIZE outputs from its interface. An
attached Subordinate must have its AxSIZE input tied according to the data width.

A4.1.2 Length attribute

The Length attribute defines the number of data transfers in a transaction.

Size x Length is the maximum number of bytes that can be transferred in a transaction. If the address is unaligned
or there are deasserted write strobes, the actual number of bytes transferred can be lower than Size x Length.

A Manager must issue the number of write data transfers according to Length.

A Subordinate must issue the number of read data transfers according to Length.

Length is communicated using the AWLEN and ARLEN signals on the write request and read request channels,
respectively. In this specification, AxLEN indicates AWLEN and ARLEN.

Table A4.4: AxLEN signals

Name Width Default Description

AWLEN,
ARLEN

8 0x00 The total number of transfers in a transaction,
encoded as: Length = AxLEN + 1.

The property LEN_Present is used to determine if the signals are present. Table A4.5 shows the legal values of
LEN_Present.

Table A4.5: LEN_Present property

LEN_Present Default Description

True Y AWLEN and ARLEN are present.

False AWLEN and ARLEN are not present.

A Manager that only issues requests of Length 1 can omit the AxLEN outputs from its interface. An attached
Subordinate must have its AxLEN input tied to 0x00.

The following rules apply to transaction Length:

• For wrapping bursts, Length can be 2, 4, 8, or 16.

• For fixed bursts, Length can be up to 16.

• A transaction must not cross a 4KB address boundary.

• Early termination of transactions is not supported.

No component can terminate a transaction early. However, to reduce the number of data transfers in a write
transaction, the Manager can disable further writing by deasserting all the write strobes. In this case, the Manager

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50

Chapter A4. AXI Transactions
A4.1. Transaction request

must complete the remaining transfers in the transaction. In a read transaction, the Manager can discard read data,
but it must complete all transfers in the transaction.

A4.1.3 Maximum number of bytes in a transaction

The maximum number of bytes in a transaction is 4KB and transactions are not permitted to cross a 4KB boundary.
However, many Managers generate transactions which are always smaller than this.

A Subordinate or interconnect might benefit from this information. For example, a Subordinate might be able to
optimize away some decode logic. An interconnect striping at a granule smaller than 4KB might be able to avoid
burst splitting if it knows that transactions will not cross the stripe boundary.

The property Max_Transaction_Bytes defines the maximum size of a transaction in bytes as shown in Table A4.6.

Table A4.6: Max_Transaction_Bytes property

Name Values Default Description

Max_Transaction_Bytes 64, 128, 256,
512, 1024,
2048, 4096

4096 A Manager issues transactions where Size x Length is
Max_Transaction_Bytes or smaller and transactions do not
cross a Max_Transaction_Bytes boundary.
A Subordinate can only accept transactions where Size x
Length is Max_Transaction_Bytes or smaller.

When connecting Manager and Subordinate interfaces, Table A4.7 indicates combinations of
Max_Transaction_Bytes that are compatible.

Table A4.7: Max_Transaction_Bytes interoperability

Manager < Subordinate Manager == Subordinate Manager > Subordinate

Compatible Compatible Not compatible

A4.1.4 Burst attribute

The Burst attribute describes how the address increments between transfers in a transaction. There are three
different Burst types:

FIXED

This Burst type is used for repeated accesses to the same location such as when loading or emptying a FIFO.

• The address is the same for every transfer in the burst.

• The byte lanes that are valid are constant for all transfers. However, within those byte lanes, the actual bytes
that have WSTRB asserted can differ for each transfer.

• The Length of the burst can be up to 16 transfers.

• The FIXED burst type can only be used with WriteNoSnoop or ReadNoSnoop Opcodes. See Chapter A8
Request Opcodes for more information.

INCR (incrementing)

With this Burst type, the address for each transfer is an increment of the address for the previous transfer. The
increment value depends on the transaction Size. For example, for an aligned start address, the address for each

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51

Chapter A4. AXI Transactions
A4.1. Transaction request

transfer in a transaction with a Size of 4 bytes is the previous address plus 4. This Burst type is used for accesses
to normal sequential memory.

WRAP (wrapping)

This Burst type is similar to INCR except that the address wraps around to a lower address if an upper address
limit is reached. The following restrictions apply:

• The start address must be aligned to the size of each transfer.

• The Length of the burst must be 2, 4, 8, or 16 transfers.

The behavior of a wrapping transaction is:

• The lowest address accessed by the transaction is the start address aligned to the total size of the data to be
transferred, that is Size * Length. This address is defined as the wrap boundary.

• After each transfer, the address increments in the same way as for an INCR burst. However, if this
incremented address is ((wrap boundary)+ (Size * Length)), then the address wraps round to the
wrap boundary.

• The first transfer in the transaction can use an address that is higher than the wrap boundary, subject to the
restrictions that apply to wrapping transactions. The address wraps when the first address is higher than the
wrap boundary. This Burst type is used for cache line accesses.

Burst is communicated using the AWBURST and ARBURST signals on the write request and read request
channels, respectively. In this specification, AxBURST indicates AWBURST and ARBURST.

Table A4.8: AxBURST signals

Name Width Default Description

AWBURST,
ARBURST

2 0b01 (INCR) Describes how the address increments between
transfers in a transaction.

Burst is encoded on the AxBURST signals as shown in Table A4.9.

Table A4.9: AxBURST encodings

AxBURST Label Meaning

0b00 FIXED Fixed burst

0b01 INCR Incrementing burst

0b10 WRAP Wrapping burst

0b11 RESERVED -

The property BURST_Present is used to determine if the AxBURST signals are present.

A Manager that only issues requests with a Burst type of INCR can omit the AxBURST outputs from its interface.
An attached Subordinate must have its AxBURST input tied to 0b01.

Table A4.10: BURST_Present property

BURST_Present Default Description

True Y AWBURST and ARBURST are present.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52

Chapter A4. AXI Transactions
A4.1. Transaction request

False AWBURST and ARBURST are not present.

Fixed_Burst_Disable

A Burst type of FIXED is not commonly used, and a property Fixed_Burst_Disable is defined in Table A4.11 to
indicate if a component supports it.

Table A4.11: Fixed_Burst_Disable property

Fixed_Burst_Disable Default Description

True Requests with Burst type FIXED are not
supported by a Subordinate interface and
not generated by a Manager interface.

False Y Requests with Burst type FIXED are
supported by a Subordinate interface and
might be generated by a Manager interface.

Compatibility between Manager and Subordinate interfaces, according to the values of the Fixed_Burst_Disable
property is shown in Table A4.12.

Table A4.12: Fixed_Burst_Disable compatibility

Fixed_Burst_Disable Subordinate: False Subordinate: True

Manager: False Compatible. Not compatible.

Manager: True Compatible. Compatible.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53

Chapter A4. AXI Transactions
A4.1. Transaction request

A4.1.5 Transfer address

This section provides methods for determining the address and byte lanes of transfers within a transaction.

The start address for a transaction is indicated using the AxADDR signals.

Table A4.13: AxADDR signals

Name Width Default Description

AWADDR,
ARADDR

ADDR_WIDTH - Address of first transfer in a transaction.

Address width

The property ADDR_WIDTH is used to define the address width.

Table A4.14: ADDR_WIDTH property

Name Values Default Description

ADDR_WIDTH 1..64 32 Width of AWADDR, ARADDR, and ACADDR in bits.

The protocol supports communication between components that have different physical address space sizes.
Components with different physical address space sizes must communicate as follows:

• The component with the smaller physical address space must be positioned within an aligned window in the
larger physical address space. Typically, the window is located at the bottom of the larger physical address
space. However, it is acceptable for the component with the smaller physical address space to be positioned
in an offset window within the larger physical address space.

• An outgoing transaction must have the required additional higher-order bits added to the transaction address.

• An incoming transaction must be examined so that:

– A transaction that is within the address window has the higher-order address bits removed and is passed
through.

– A transaction that does not have the required higher-order address bits is suppressed.

It is the responsibility of the interconnect to provide the required functionality.

A4.1.6 Transaction equations

The equations listed here are used to determine the address and active data byte lanes for each transfer in a
transaction. The equations use the following additional variables:

• Start_Addr: The start address that is issued by the Manager.

• Data_Bytes: The width of the data channels in bytes (DATA_WIDTH/8).

• Aligned_Addr: The aligned version of the start address.

• Address_N: The address of transfer N in a transaction. N is 1 for the first transfer in a transaction.

• Wrap_Boundary: The lowest address within a wrapping transaction.

• Lower_Byte_Lane: The byte lane of the lowest addressed byte of a transfer.

• Upper_Byte_Lane: The byte lane of the highest addressed byte of a transfer.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter A4. AXI Transactions
A4.1. Transaction request

• INT(x): The rounded-down integer value of x.

These equations determine addresses of transfers within a burst:

Start_Addr = AxADDR

Aligned_Addr = INT(Start_Addr / Size)* Size

This equation determines the address of the first transfer in a burst:

Address_1 = Start_Addr

For an INCR burst and for a WRAP burst for which the address has not wrapped, this equation determines the
address of any transfer after the first transfer in a burst:

Address_N = Aligned_Addr + (N - 1)* Size

For a WRAP burst, the Wrap_Boundary variable defines the wrapping boundary:

Wrap_Boundary = INT(Start_Addr / (Size * Length))* Size * Length

For a WRAP burst, if Address_N = Wrap_Boundary + Size * Length, then:

• Use this equation for the current transfer:

Address_N = Wrap_Boundary

• Use this equation for any subsequent transfers:

Address_N = Start_Addr + ((N - 1)* Size)- (Size * Length)

These equations determine the byte lanes to use for the first transfer in a burst:

Lower_Byte_Lane = Start_Addr - (INT(Start_Addr/Data_Bytes)* Data_Bytes)

Upper_Byte_Lane = Aligned_Addr + (Size-1)- (INT(Start_Addr/Data_Bytes)* Data_Bytes)

These equations determine the byte lanes to use for all transfers after the first transfer in a burst:

Lower_Byte_Lane = Address_N - (INT(Address_N / Data_Bytes)* Data_Bytes)

Upper_Byte_Lane = Lower_Byte_Lane + Size - 1

Data is transferred on:

DATA((8 * Upper_Byte_Lane)+ 7: (8 * Lower_Byte_Lane))

The transaction container describes all the bytes that could be accessed in that transaction, if the address is aligned
and strobes are asserted:

Container_Size = Size * Length

For INCR bursts:

Container_Lower = Aligned_Addr

Container_Upper = Aligned_Addr + Container_Size

For WRAP bursts:

Container_Lower = Wrap_Boundary

Container_Upper = Wrap_Boundary + Container_Size

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55

Chapter A4. AXI Transactions
A4.1. Transaction request

A4.1.7 Pseudocode description of the transfers

// DataTransfer()
DataTransfer(Start_Addr, Size, Length, Data_Bytes, Burst, IsWrite)
// IsWrite is TRUE for a write, and FALSE for a read

addr = Start_Addr; // Variable for current address
Aligned_Addr = (INT(addr/Size) * Size);
aligned = (Aligned_Addr == addr); // Check whether addr aligned to Size
Container_Size = Size * Length;

if Burst == WRAP then
Lower_Wrap_Boundary = (INT(addr/Container_Size) * Container_Size);
// addr must be aligned for a wrapping burst
Upper_Wrap_Boundary = Lower_Wrap_Boundary + Container_Size;

for n = 1 to Length
Lower_Byte_Lane = addr - (INT(addr/Data_Bytes) * Data_Bytes);
if aligned then

Upper_Byte_Lane = Lower_Byte_Lane + Size - 1
else

Upper_Byte_Lane = Aligned_Addr + Size - 1
- (INT(addr/Data_Bytes) * Data_Bytes);

// Perform data transfer
if IsWrite then

dwrite(addr, Lower_Byte_Lane, Upper_Byte_Lane)
else

dread(addr, Lower_Byte_Lane, Upper_Byte_Lane);

// Increment address if necessary
if Burst != FIXED then

if aligned then
addr = addr + Size;
if Burst == WRAP then

if addr >= Upper_Wrap_Boundary then addr = Lower_Wrap_Boundary;
else

addr = Aligned_Addr + Size;
aligned = TRUE; // All transfers after the first are aligned

return;

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter A4. AXI Transactions
A4.1. Transaction request

A4.1.8 Regular transactions

There are many options of burst, size, and length for a transaction. However, some interfaces and transaction types
might only use a subset of these options. If a Subordinate component is attached to a Manager which uses only a
subset of transaction options, it can be designed with simplified decode logic.

The Regular attribute is defined, to identify transactions which meet the following criteria:

• Length is 1, 2, 4, 8, or 16 transfers.

• Size is the same as the data channel width if Length is greater than 1.

• Burst is INCR or WRAP, not FIXED.

• Address is aligned to the transaction container for INCR transactions.

• Address is aligned to Size for WRAP transactions.

The Regular_Transactions_Only property is used to define whether a Manager issues only Regular type
transactions and if a Subordinate only supports Regular transactions.

Table A4.15: Regular_Transactions_Only property

Regular_Transactions_Only Default Description

True Only Regular transactions are issued/supported.

False Y All legal combinations of Burst, Size, and Length are
issued/supported.

Interoperability rules for Regular transactions are shown in Table A4.16.

Table A4.16: Regular_Transactions_Only interoperability

Subordinate: False Subordinate: True

Manager: False Compatible. Not compatible.
If the Manager issues a transaction that is not Regular,
then data corruption or deadlock might occur.

Manager: True Compatible. Compatible.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57

Chapter A4. AXI Transactions
A4.2. Write and read data

A4.2 Write and read data

This section describes the transfers of varying sizes on the AXI write and read data channels and how the interface
performs mixed-endian and unaligned transfers.

A4.2.1 Write strobes

The WSTRB signal carries write strobes that specify which byte lanes of the write data channel contain valid
information.

Table A4.17: WSTRB signal

Name Width Default Description

WSTRB DATA_WIDTH / 8 All ones Indicates which byte lanes of WDATA
contain valid data in a write transaction.

There is one write strobe for each 8 bits of the write data channel, therefore WSTRB[n] corresponds to
WDATA[(8n)+7:(8n)].

When WVALID is HIGH:

• Data bytes to be written have a corresponding write strobe set HIGH.

• Inside of the transaction container any number of write strobes can be HIGH. If all write strobes are LOW,
no data is written from that transfer.

• Outside of the transaction container all write strobes must be LOW.

When WVALID is LOW, the write strobes can take any value, although it is recommended that they are either
driven LOW or held at their previous value.

It is recommended that WDATA is driven to zero for byte lanes where the strobe is LOW.

The property WSTRB_Present is used to indicate if the WSTRB signal is present on an interface.

Table A4.18: WSTRB_Present property

WSTRB_Present Default Description

True Y WSTRB is present.

False WSTRB is not present.

A Manager that only issues transactions where all write strobes are asserted can omit the WSTRB output from its
interface. An attached Subordinate must have its WSTRB input tied HIGH.

A4.2.2 Narrow transfers

When a Manager generates a transfer that is narrower than its data channel, the address and control information
determine the byte lanes that the transfer uses:

• When Burst is INCR or WRAP, different byte lanes are used for each data transfer in the transaction.

• When Burst is FIXED, the same byte lanes are used for each data transfer in the transaction.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

58

Chapter A4. AXI Transactions
A4.2. Write and read data

Two examples of byte lane use are shown in Figure A4.1 and Figure A4.2. The shaded cells indicate bytes that are
not transferred.

In Figure A4.1:

• The transaction has five data transfers.

• The starting address is 0.

• Each transfer is 8 bits.

• The transfers are on a 32-bit data channel.

• The burst type is INCR.

D[7:0]

D[15:8]

D[23:16]

D[31:24]

D[7:0]

1st transfer

2nd transfer

3rd transfer

4th transfer

5th transfer

0781516232431

WDATA[31:0]

Figure A4.1: Narrow transfer example with 8-bit transfers

In Figure A4.2:

• The transaction has three data transfers.

• The starting address is 4.

• Each transfer is 32 bits.

• The transfers are on a 64-bit data channel.

D[31:24] D[23:16] D[15:8] D[7:0]

1st transfer

2nd transfer

3rd transfer

0781516232431

D[63:56] D[55:48] D[47:40] D[39:32]

D[63:56] D[55:48] D[47:40] D[39:32]

3239404748555663

WDATA[63:0]

Figure A4.2: Narrow transfer example with 32-bit transfers

A4.2.3 Byte invariance

To access mixed-endian data structures in a single memory space, the AXI protocol uses a byte-invariant
endianness scheme.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59

Chapter A4. AXI Transactions
A4.2. Write and read data

Byte-invariant endianness means that for any multi-byte element in a data structure:

• The element uses the same continuous bytes of memory, regardless of the endianness of the data.

• The endianness determines the order of those bytes in memory, meaning it determines whether the first byte
in memory is the most significant byte (MSB) or the least significant byte (LSB) of the element.

• Any byte transfer to an address passes the 8 bits of data on the same data channel wires to the same address
location, regardless of the endianness of any larger data element that it is a constituent of.

Components that have only one transfer width must have their byte lanes connected to the appropriate byte lanes
of the data channel. Components that support multiple transfer widths might require a more complex interface to
convert an interface that is not naturally byte-invariant.

Most little-endian components can connect directly to a byte-invariant interface. Components that support only
big-endian transfers require a conversion function for byte-invariant operation.

The examples in Figure A4.3 and Figure A4.4 show a 32-bit number 0x0A0B0C0D, stored in a register and in a
memory.

In Figure A4.3 there is an example of the big-endian, byte-invariant data structure. In this structure:

• The MSB of the data, which is 0x0A, is stored in the MSB position in the register.

• The MSB of the data is stored in the memory location with the lowest address.

• The other data bytes are positioned in decreasing order of significance.

0x0A

0x0B

0x0C

0x0D

Memory

Addr+1

Addr

Addr+2

Addr+3

0x0A 0x0B 0x0C 0x0D

0781516232431

Register

Figure A4.3: Example big-endian byte-invariant data structure

In Figure A4.4 there is an example of a little-endian, byte-invariant data structure. In this structure:

• The LSB of the data, which is 0x0D, is stored in the LSB position in the register.

• The LSB of the data is stored in the memory location with the lowest address.

• The other data bytes are positioned in increasing order of significance.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter A4. AXI Transactions
A4.2. Write and read data

0x0D

0x0C

0x0B

0x0A

Memory

Addr+1

Addr

Addr+2

Addr+3

0x0A 0x0B 0x0C 0x0D

0781516232431

Register

Figure A4.4: Example little-endian byte-invariant data structure

The examples in Figure A4.3 and Figure A4.4 show that byte invariance ensures that big-endian and little-endian
structures can coexist in a single memory space without corruption.

In Figure A4.5 there is an example of a data structure that requires byte-invariant access. In this example, the
header fields use little-endian ordering, and the payload uses big-endian ordering.

PacketSourceD0†

D1†Checksum

Data items

Payload

Payload

Payload

Payload

Header, little-endian
byte ordering

Payload, big-endian
byte ordering

† 16-bit continuous Destination field

31 24 23 16 15 8 7 0

Figure A4.5: Example mixed-endian data structure

In this example structure, Data items is a two-byte little-endian element, meaning its lowest address is its LSB. The
use of byte invariance ensures that a big-endian access to the payload does not corrupt the little-endian element.

A4.2.4 Unaligned transfers

AXI supports unaligned transfers. For any transaction that is made up of data transfers wider than 1 byte, the first
bytes accessed might be unaligned with the natural address boundary. For example, a 32-bit data packet that starts
at a byte address of 0x1002 is not aligned to the natural 32-bit address boundary.

A Manager can:

• Use the low-order address lines to signal an unaligned start address.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61

Chapter A4. AXI Transactions
A4.2. Write and read data

• Provide an aligned address and use the byte lane strobes to signal the unaligned start address.

The information on the low-order address lines must be consistent with the information on the byte lane strobes.

The Subordinate is not required to take special action based on any alignment information from the Manager.

In Figure A4.6 there are examples of aligned and unaligned 32-bit transactions on a 32-bit data channel. Each row
in the figure represents a transfer and the shaded cells indicate bytes that are not transferred.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

62

Chapter A4. AXI Transactions
A4.2. Write and read data

0x00

0x00

0x06 0x05 0x04

Address: 0x00
Transfer size: 32-bits

Burst type: incrementing
Burst length: 4 transfers

0x03 0x02 0x01 0x00

0x07 0x06 0x05 0x04

0x0B 0x0A 0x09 0x08

0x0F 0x0E 0x0D 0x0C

0x03 0x02 0x01

0x07 0x06 0x05 0x04

0x0B 0x0A 0x09 0x08

0x0F 0x0E 0x0D 0x0C

Address: 0x01
Transfer size: 32-bits

Burst type: incrementing
Burst length: 4 transfers

0x03 0x02 0x01

0x07 0x06 0x05 0x04

0x0B 0x0A 0x09 0x08

0x0F 0x0E 0x0D 0x0C

Address: 0x01
Transfer size: 32-bits

Burst type: incrementing
Burst length: 5 transfers

0x13 0x12 0x11 0x10

0x07

0x0B 0x0A 0x09 0x08

0x0F 0x0E 0x0D 0x0C

0x13 0x12 0x11 0x10

0x17 0x16 0x15 0x14

Address: 0x07
Transfer size: 32-bits

Burst type: incrementing
Burst length: 5 transfers

1st transfer

2nd transfer

3rd transfer

4th transfer

1st transfer

2nd transfer

3rd transfer

4th transfer

1st transfer

2nd transfer

3rd transfer

4th transfer

5th transfer

1st transfer

2nd transfer

3rd transfer

4th transfer

5th transfer

0715 816232431

0715 816232431

0715 816232431

0715 816232431

WDATA[31:0]

WDATA[31:0]

WDATA[31:0]

WDATA[31:0]

Figure A4.6: Aligned and unaligned transfers on a 32-bit data channel

In Figure A4.7 there are examples of aligned and unaligned 32-bit transactions on a 64-bit data channel. Each row

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63

Chapter A4. AXI Transactions
A4.2. Write and read data

in the figure represents a transfer and the shaded cells indicate bytes that are not transferred.

0x04

0x04

Address: 0x00
Transfer size: 32-bits

Burst type: incrementing
Burst length: 4 transfers

0x07 0x06 0x05 0x04

0x07 0x06 0x05 0x04

0x0F 0x0E 0x0D 0x0C

0x0F 0x0E 0x0D 0x0C

0x07 0x06 0x05

0x0F 0x0E 0x0D 0x0C

0x0F 0x0E 0x0D 0x0C

0x17 0x16 0x15 0x14

Address: 0x07
Transfer size: 32-bits

Burst type: incrementing
Burst length: 4 transfers

0x07 0x06 0x05

0x0F 0x0E 0x0D 0x0C

0x0F 0x0E 0x0D 0x0C

0x17 0x16 0x15 0x14

Address: 0x07
Transfer size: 32-bits

Burst type: incrementing
Burst length: 5 transfers

0x17 0x16 0x15 0x14

0x03 0x02 0x01 0x00

0x03 0x02 0x01 0x00

0x0B 0x0A 0x09 0x08

0x0B 0x0A 0x09 0x08

0x000x03 0x02 0x01

0x0B 0x0A 0x09 0x08

0x0B 0x0A 0x09 0x08

0x13 0x12 0x11 0x10

0x000x03 0x02 0x01

0x0B 0x0A 0x09 0x08

0x0B 0x0A 0x09 0x08

0x13 0x12 0x11 0x10

0x13 0x12 0x11 0x10

1st transfer

2nd transfer

3rd transfer

4th transfer

5th transfer

1st transfer

2nd transfer

3rd transfer

4th transfer

1st transfer

2nd transfer

3rd transfer

4th transfer

0715 816232431323947 4048555663

0715 816232431323947 4048555663

0715 816232431323947 4048555663

WDATA[63:0]

WDATA[63:0]

WDATA[63:0]

Figure A4.7: Aligned and unaligned transfers on a 64-bit data channel

In Figure A4.8 there is an example of an aligned 32-bit wrapping transaction on a 64-bit data channel. Each row in
the figure represents a transfer and the shaded cells indicate bytes that are not transferred.

Address: 0x04
Transfer size: 32-bits
Burst type: wrapping

Burst length: 4 transfers

0x07 0x06 0x05 0x04

0x0F 0x0E 0x0D 0x0C

0x0F 0x0E 0x0D 0x0C

0x07 0x06 0x05 0x04

0x03 0x02 0x01 0x00

0x0B 0x0A 0x09 0x08

0x0B 0x0A 0x09 0x08

0x03 0x02 0x01 0x00

1st transfer

2nd transfer

3rd transfer

4th transfer

0715 816232431323947 4048555663

WDATA[63:0]

Figure A4.8: Aligned wrapping transfers on a 64-bit channel

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64

Chapter A4. AXI Transactions
A4.3. Transaction response

A4.3 Transaction response

Every AXI transaction includes one or more response transfers sent by the Subordinate to indicate the result of the
transaction.

Transactions on the write channels have one or more write responses.

Transactions on the read channels have one or more read responses.

Atomic transactions have write and read responses, see A7.4 Atomic transactions.

A4.3.1 Write response

Write responses are transported using the BRESP signal on the write response channel. All transactions on the
write channels have one Completion response which indicates the result of the transaction. Some transactions also
have a second write response, for example to indicate Persistence, see A10.8.4 PCMO response on the B channel.

The BRESP and BCOMP signals are used to send write responses.

Table A4.19: BRESP and BCOMP signals

Name Width Default Description

BRESP BRESP_WIDTH 0b000
(OKAY)

Indicates the result of a transaction that uses the
write channels.

BCOMP 1 0b1 Asserted HIGH to indicate a Completion response.

The BRESP_WIDTH property is defined in Table A4.20.

Table A4.20: BRESP_WIDTH property

Name Values Default Description

BRESP_WIDTH 0, 2, 3 2 Width of BRESP in bits.
Must be 3 if:
Untranslated_Transactions = v2 OR
Untranslated_Transactions = v3 OR
WriteDeferrable_Transaction = True

BRESP is an optional signal. If the BRESP_WIDTH property is 0, it is not present and assumed to be 0b000
(OKAY).

BCOMP is only present if an interface is using a feature that can have two write responses, these are:

• Cache maintenance for Persistence, see A10.8 CMOs for Persistence.

• Memory Tagging, see A13.2 Memory Tagging Extension (MTE).

If BCOMP is present, it must be asserted for one response transfer of every transaction on the write channels.

The BRESP encodings are shown in Table A4.21.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

65

Chapter A4. AXI Transactions
A4.3. Transaction response

Table A4.21: BRESP encodings

BRESP Label Meaning

0b000 OKAY Non-exclusive write: The transaction was successful. If the transaction
includes write data, the updated value is observable.
Exclusive write: Failed to update the location.

0b001 EXOKAY Exclusive write succeeded. This response is only permitted for an
exclusive write.

0b010 SLVERR The request has reached an end point but has not completed successfully.
The location might not be fully updated. Typically used when there is a
problem within a Subordinate such as trying to access a read-only or
powered-down function.

0b011 DECERR The request has not reached a point where data can be written. The
location might not be fully updated. Typically used when the address
decodes to an invalid address.

0b100 DEFER Write was unsuccessful because it cannot be serviced at this time. The
location is not updated. This response is only permitted for a
WriteDeferrable transaction.

0b101 TRANSFAULT Write was terminated because of a translation fault which might be
resolved by a PRI request.

0b110 RESERVED -

0b111 UNSUPPORTED Write was unsuccessful because the transaction type is not supported by
the target. The location is not updated. This response is only permitted
for a WriteDeferrable transaction.

A4.3.2 Read response

The read response indicates if the read was successful and whether the data in that transfer is valid.

Read responses are transported using the RRESP signal on the read data channel. There is a read response with
every read data transfer in a transaction. The response value is not required to be the same for every read data
transfer in a transaction.

It is required that all data transfers as indicated by Length are always completed irrespective of the response. For
some responses, the data in that transfer is not required to be valid.

The RRESP signal is defined in Table A4.22.

Table A4.22: RRESP signal

Name Width Default Description

RRESP RRESP_WIDTH 0b000
(OKAY)

Response for transactions on the read channels.
Must be valid when RVALID is asserted.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66

Chapter A4. AXI Transactions
A4.3. Transaction response

The RRESP_WIDTH property is defined in Table A4.23.

Table A4.23: RRESP_WIDTH property

Name Values Default Description

RRESP_WIDTH 0, 2, 3 2 Width of RRESP in bits.
Must be 3 if Prefetch_Transaction = True OR
Untranslated_Transactions = v2 OR
Untranslated_Transactions = v3 OR
Shareable_Cache_Support = True

RRESP is an optional signal. If the RRESP_WIDTH property is 0, it is not present and assumed to be 0b000
(OKAY).

The RRESP encodings are shown in Table A4.24.

For responses where data is not required to be valid, the Manager might still sample the RDATA value so the
Subordinate should not rely on the response to hide sensitive data.

Table A4.24: RRESP encodings

RRESP Label Meaning

0b000 OKAY Non-exclusive read: Transaction has completed successfully, read data
is valid.
Exclusive read: Subordinate does not support exclusive accesses.

0b001 EXOKAY Exclusive read succeeded. This response is only permitted for an
exclusive read.

0b010 SLVERR Transaction has encountered a contained error; only this location is
affected. Typically used when there is a problem within a Subordinate
such as a FIFO overrun, unsupported transfer size or trying to access a
powered-down function.
Read data is not valid.

0b011 DECERR Transaction has encountered a non-contained error; other locations may
be affected. Typically used when the address decodes to an invalid
address. Read data is not valid.

0b100 PREFETCHED Read data is valid and has been sourced from a prefetched value.

0b101 TRANSFAULT Transaction was terminated because of a translation fault which might
be resolved by a PRI request. Read data is not valid.

0b110 OKAYDIRTY Read data is valid and is Dirty with respect to the value in memory.
Only permitted for a response to a ReadShared request.

0b111 RESERVED -

The value of RRESP is not constrained to be the same for every transfer in a transaction. A response of DECERR
is generally used when there is a problem accessing a Subordinate, and in this case DECERR is signaled
consistently in every transfer of read data. There may be a benefit if a Manager can inspect just one read data
transfer to determine whether a DECERR has occurred.

The Consistent_DECERR property is used to define whether a Subordinate signals DECERR consistently within a
transaction as shown in Table A4.25.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

67

Chapter A4. AXI Transactions
A4.3. Transaction response

Table A4.25: Consistent_DECERR property

Consistent_DECERR Default Description

True DECERR is signaled for every read data transfer, or no read data
transfers in each cache line of data.
For example, a transaction which crosses a cache line boundary can
receive a DECERR response for every read data transfer on one cache
line and no data transfers on the next cache line.

False Y DECERR may be signaled on any number of read data transfers.

A Subordinate interface that does not use the DECERR response can set the Consistent_DECERR property to
True.

A Manager with Consistent_DECERR set True can inspect a single data transfer to determine whether a DECERR
has occurred.

Setting this property to True can be helpful when bridging between AXI and CHI where DECERR translates to a
Non-data Error.

When connecting Manager and Subordinate interfaces, Table A4.26 indicates combinations of
Consistent_DECERR that are compatible.

Table A4.26: Consistent_DECERR interoperability

Subordinate: False Subordinate: True

Manager: False Compatible. Compatible.

Manager: True Not compatible.
A DECERR response might be
missed by the Manager.

Compatible.

A4.3.3 Subordinate Busy indicator

When providing a response, a Subordinate can indicate its current level of activity using the Busy indicator. This
information can be used to control the issue rate of a Manager or how many speculative transactions it produces.

The Busy indication is useful for components with a shared resource, such as a memory controller or system cache.
For example, the Busy indication can indicate:

• The level of a shared queue.

• The level of a read or write request queue, depending on the direction of the transaction.

• When the resource usage by a component is more or less than its allocated value.

The Busy_Support property as shown in Table A4.27 is used to define whether an interface includes the Busy
indicator signals.

Table A4.27: Busy_Support property

Busy_Support Default Description

True Subordinate busy is supported.

False Y Subordinate busy is not supported.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68

Chapter A4. AXI Transactions
A4.3. Transaction response

When Busy_Support is True, the following signals are included on an interface.

Table A4.28: Busy indicator signals

Name Width Default Description

BBUSY,
RBUSY

2 0b00 Indicates the current level of Subordinate activity
in a transaction response. The value increases as
the Subordinate becomes busier.

For transactions with multiple read data transfers, Busy must be valid but can take a different value for every
transfer.

For transactions with multiple write responses, Busy must be valid in the response with BCOMP asserted. For
other write responses, Busy is not-applicable and can take any value.

For Atomic transactions with write and read responses, BBUSY and RBUSY are expected, but not required to
have the same value.

The exact usage of Busy indicator values is IMPLEMENTATION DEFINED, in Table A4.29 there is an example of
how it can be used. In this example, a default value of 0b01 would be appropriate if a Subordinate was not able to
generate a dynamic busy indicator.

Table A4.29: Example usage of the Busy indicator

Busy indicator value Meaning Manager behavior

0b00 Not busy Increase speculative requests

0b01 Optimally busy No change

0b10 Quite busy Decrease speculative requests

0b11 Very busy Heavily decrease speculative requests

When connecting Manager and Subordinate interfaces, Table A4.30 indicates combinations of Busy_Support that
are compatible.

Table A4.30: Busy_Support interoperability

Subordinate: False Subordinate: True

Manager: False Compatible. Compatible, BUSY outputs are left
unconnected.

Manager: True Compatible, BUSY inputs are tied
to the default value.

Compatible.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69

Chapter A5
Request attributes

This chapter describes request attributes that indicate how the request should be handled by downstream
components. It contains the following sections:

• A5.1 Subordinate types

• A5.2 Memory Attributes

• A5.3 Memory types

• A5.4 Protocol errors

• A5.5 Memory protection and the Realm Management Extension

• A5.6 Memory Encryption Contexts

• A5.7 Multiple region interfaces

• A5.8 QoS signaling

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Chapter A5. Request attributes
A5.1. Subordinate types

A5.1 Subordinate types

Subordinates are classified as either a Memory Subordinate or a Peripheral Subordinate.

Memory Subordinate

A Memory Subordinate is required to handle all transaction types correctly.

Peripheral Subordinate

A Peripheral Subordinate has an IMPLEMENTATION DEFINED method of access. Typically, the method of access is
defined in the component data sheet that describes the transaction types that the Subordinate handles correctly.

Any access to the Peripheral Subordinate that is not part of the IMPLEMENTATION DEFINED method of access
must complete, in compliance with the protocol. However, when such an access has been made, there is no
requirement that the Peripheral Subordinate continues to operate correctly. The Subordinate is only required to
continue to complete further transactions in a protocol-compliant manner.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

71

Chapter A5. Request attributes
A5.2. Memory Attributes

A5.2 Memory Attributes

This section describes the attributes that determine how a request should be treated by system components such as
caches, buffers, and memory controllers.

The AWCACHE and ARCACHE signals specify the memory attributes of a request. They control:

• How a transaction progresses through the system.

• How any system-level buffers and caches handle the transaction.

In this specification, the term AxCACHE refers collectively to the AWCACHE and ARCACHE signals. Table
A5.1 describes the AWCACHE and ARCACHE signals.

Table A5.1: AxCACHE signals

Name Width Default Description

AWCACHE,
ARCACHE

4 0x0 The memory attributes of a request control how a
transaction progresses through the system and how
caches and buffers handle the request.

The property CACHE_Present is used to determine if the AxCACHE signals are present on an interface.

Table A5.2: CACHE_Present property

CACHE_Present Default Description

True Y AWCACHE and ARCACHE are present.

False AWCACHE and ARCACHE are not
present.

AWCACHE bits are encoded as:

• [0] Bufferable
• [1] Modifiable
• [2] Other Allocate
• [3] Allocate

ARCACHE bits are encoded as:

• [0] Bufferable
• [1] Modifiable
• [2] Allocate
• [3] Other Allocate

Note that the Allocate and Other Allocate bits are in different positions for read and write requests.

A5.2.1 Bufferable, AxCACHE[0]

For write transactions:

• If the Bufferable bit is deasserted, the write response indicates that the data has reached its final destination.

• If the Bufferable bit is asserted, the write response can be sent from an intermediate point, when the
observability requirements have been met.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter A5. Request attributes
A5.2. Memory Attributes

For read transactions where ARCACHE[3:2] are deasserted (Non-cacheable) and ARCACHE[1] is asserted
(Modifiable):

• If the Bufferable bit is deasserted, the read data must be obtained from the final destination.

• If the Bufferable bit is asserted, the read data can be obtained from the final destination or from a write that is
progressing to the final destination.

For other combinations of ARCACHE[3:1], the Bufferable bit has no effect.

A5.2.2 Modifiable, AxCACHE[1]

When AxCACHE[1] is asserted, the transaction is Modifiable which indicates that the characteristics of the
transaction can be modified. When AxCACHE[1] is deasserted, the transaction is Non-modifiable.

The following sections describe the properties of Non-modifiable and Modifiable transactions.

Non-modifiable transactions

A Non-modifiable transaction must not be split into multiple transactions or merged with other transactions.

In a Non-modifiable transaction, the parameters that are shown in Table A5.3 must not be changed.

Table A5.3: Parameters fixed as Non-modifiable

Parameter Signals

Address AxADDR, and therefore AxREGION

Size AxSIZE

Length AxLEN

Burst type AxBURST

Protection attributes AxPROT, AxNSE

The AxCACHE attribute can only be modified to convert a transaction from being Bufferable to Non-bufferable.
No other change to AxCACHE is permitted.

The transaction ID and the QoS values can be modified.

A Non-modifiable transaction with Length greater than 16 can be split into multiple transactions. Each resulting
transaction must meet the requirements that are given in this subsection, except that:

• The Length is reduced.

• The address of the generated transactions is adapted appropriately.

A Non-modifiable transaction that is an exclusive access, as indicated by AxLOCK asserted, is permitted to have
the Size, AxSIZE, and Length, AxLEN, modified if the total number of bytes accessed remains the same.

There are circumstances where it is not possible to meet the requirements of Non-modifiable transactions. For
example, when downsizing to a data width narrower than required by Size, the transaction must be modified.

A component that performs such an operation can optionally include an IMPLEMENTATION DEFINED mechanism
to indicate that a modification has occurred. This mechanism can assist with software debug.

Modifiable transactions

A Modifiable transaction can be modified in the following ways:

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Chapter A5. Request attributes
A5.2. Memory Attributes

• A transaction can be broken into multiple transactions.

• Multiple transactions can be merged into a single transaction.

• A read transaction can fetch more data than required.

• A write transaction can access a larger address range than required using the WSTRB signals to ensure that
only the appropriate locations are updated.

• In each generated transaction, the following attributes can be modified:

– Address, AxADDR

– Size, AxSIZE

– Length, AxLEN

– Burst type, AxBURST

The following must not be changed:

• Exclusive access indicator, AxLOCK

• The protection and security attributes, AxPROT and AxNSE.

AxCACHE can be modified, but any modification must ensure that the visibility of transactions by other
components is not reduced, either by preventing propagation of transactions to the required point, or by changing
the need to look up a transaction in a cache. Any modification to the memory attributes must be consistent for all
transactions to the same address range.

The transaction ID and QoS values can be modified.

No transaction modification is permitted that:

• Causes accesses to a different 4KB address space than that of the original transaction.

• Causes a single access to a single-copy atomicity sized region to be performed as multiple accesses.
See A7.1 Single-copy atomicity size.

A5.2.3 Allocate and Other Allocate, AxCACHE[2], and AxCACHE[3]

If the Allocate bit is asserted:

• The data might have been previously allocated, so the line must be looked up in a cache.

• It is recommended that the data is allocated into a cache for future use.

If the Other Allocate bit is asserted:

• The data might have been previously allocated, so the line must be looked up in a cache.

• It is not recommended that the data is allocated as it is not expected to be accessed again.

If Allocate and Other Allocate are both deasserted, the request is not required to look up in any cache.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

Chapter A5. Request attributes
A5.3. Memory types

A5.3 Memory types

The combination of AxCACHE signals indicates a memory type. Table A5.4 shows the memory type encodings.
Values in brackets are permitted but not preferred. Values that are not shown in the table are reserved.

Table A5.4: Memory type encoding

ARCACHE[3:0] AWCACHE[3:0] Memory type

0b0000 0b0000 Device Non-bufferable

0b0001 0b0001 Device Bufferable

0b0010 0b0010 Normal Non-cacheable Non-bufferable

0b0011 0b0011 Normal Non-cacheable Bufferable

0b1010 0b0110 Write-Through No-Allocate

0b1110 (0b0110) 0b0110 Write-Through Read-Allocate

0b1010 0b1110 (0b1010) Write-Through Write-Allocate

0b1110 0b1110 Write-Through Read and Write-Allocate

0b1011 0b0111 Write-Back No-Allocate

0b1111 (0b0111) 0b0111 Write-Back Read-Allocate

0b1011 0b1111 (0b1011) Write-Back Write-Allocate

0b1111 0b1111 Write-Back Read and Write-Allocate

A5.3.1 Memory type requirements

This section specifies the required behavior for each of the memory types.

Device Non-bufferable

The required behavior for Device Non-bufferable memory is:

• The write response must be obtained from the final destination.

• Read data must be obtained from the final destination.

• Transactions are Non-modifiable, see A5.2.2 Non-modifiable transactions.

• Read data must not be prefetched.

• Write transactions must not be merged.

Device Bufferable

The required behavior for the Device Bufferable memory type is:

• The write response can be obtained from an intermediate point.

• Write transactions must be made visible at the final destination in a timely manner.

• Read data must be obtained from the final destination.

• Transactions are Non-modifiable, see A5.2.2 Non-modifiable transactions.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

75

Chapter A5. Request attributes
A5.3. Memory types

• Read data must not be prefetched.

• Write transactions must not be merged.

Both Device memory types are Non-modifiable. In this specification, the terms Device memory and
Non-modifiable memory are interchangeable.

For read transactions, there is no difference in the required behavior for Device Non-bufferable and Device
Bufferable memory types.

Normal Non-cacheable Non-bufferable

The required behavior for the Normal Non-cacheable Non-bufferable memory type is:

• The write response must be obtained from the final destination.

• Read data must be obtained from the final destination.

• Transactions are Modifiable, see A5.2.2 Modifiable transactions.

• Write transactions can be merged.

Normal Non-cacheable Bufferable

The required behavior for the Normal Non-cacheable Bufferable memory type is:

• The write response can be obtained from an intermediate point.

• Write transactions must be made visible at the final destination in a timely manner, as defined in the glossary.
There is no mechanism to determine when a write transaction is visible at its final destination.

• Read data must be obtained from either:

– The final destination.

– A write transaction that is progressing to its final destination.

• If read data is obtained from a write transaction:

– It must be obtained from the most recent version of the write.

– The data must not be cached to service a later read.

• Transactions are Modifiable, see A5.2.2 Modifiable transactions.

• Write transactions can be merged.

For a Normal Non-cacheable Bufferable read, data can be obtained from a write transaction that is still progressing
to its final destination. This data is indistinguishable from the read and write transactions propagating to arrive at
the final destination at the same time. Read data that is returned in this manner does not indicate that the write
transaction is visible at the final destination.

Write-Through No-Allocate

The required behavior for the Write-Through No-Allocate memory type is:

• The write response can be obtained from an intermediate point.

• Write transactions must be made visible at the final destination in a timely manner, as defined in the glossary.
There is no mechanism to determine when a write transaction is visible at the final destination.

• Read data can be obtained from an intermediate cached copy.

• Transactions are Modifiable, see A5.2.2 Modifiable transactions.

• Read data can be prefetched.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

76

Chapter A5. Request attributes
A5.3. Memory types

• Write transactions can be merged.

• A cache lookup is required for read and write transactions.

• The No-Allocate attribute is an allocation hint, that is, it is a recommendation to the memory system that for
performance reasons, these transactions are not allocated. However, the allocation of read and write
transactions is not prohibited.

Write-Through Read-Allocate

The required behavior for the Write-Through Read-Allocate memory type is the same as for Write-Through
No-Allocate memory. For performance reasons:

• Allocation of read transactions is recommended.

• Allocation of write transactions is not recommended.

Write-Through Write-Allocate

The required behavior for the Write-Through Write-Allocate memory type is the same as for Write-Through
No-Allocate memory. For performance reasons:

• Allocation of read transactions is not recommended.

• Allocation of write transactions is recommended.

Write-Through Read and Write-Allocate

The required behavior for the Write-Through Read and Write-Allocate memory type is the same as for
Write-Through No-Allocate memory. For performance reasons:

• Allocation of read transactions is recommended.

• Allocation of write transactions is recommended.

Write-Back No-Allocate

The required behavior for the Write-Back No-Allocate memory type is:

• The write response can be obtained from an intermediate point.

• Write transactions are not required to be made visible at the final destination.

• Read data can be obtained from an intermediate cached copy.

• Transactions are Modifiable, see A5.2.2 Modifiable transactions.

• Read data can be prefetched.

• Write transactions can be merged.

• A cache lookup is required for read and write transactions.

• The No-Allocate attribute is an allocation hint, that is, it is a recommendation to the memory system that for
performance reasons, these transactions are not allocated. However, the allocation of read and write
transactions is not prohibited.

Write-Back Read-Allocate

The required behavior for the Write-Back Read-Allocate memory type is the same as for Write-Back No-Allocate
memory. For performance reasons:

• Allocation of read transactions is recommended.

• Allocation of write transactions is not recommended.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

77

Chapter A5. Request attributes
A5.3. Memory types

Write-Back Write-Allocate

The required behavior for the Write-Back Write-Allocate memory type is the same as for Write-Back No-Allocate
memory. For performance reasons:

• Allocation of read transactions is not recommended.

• Allocation of write transactions is recommended.

Write-Back Read and Write-Allocate

The required behavior for the Write-Back Read and Write-Allocate memory type is the same as for Write-Back
No-Allocate memory. For performance reasons:

• Allocation of read transactions is recommended.

• Allocation of write transactions is recommended.

A5.3.2 Mismatched memory attributes

Multiple agents that are accessing the same area of memory, can use mismatched memory attributes. However, for
functional correctness, the following rules must be obeyed:

• All Managers accessing the same area of memory must have a consistent view of the cacheability of that area
of memory at any level of hierarchy. The rules to be applied are:

– If the address region is Non-cacheable, all Managers must use transactions with both AxCACHE[3:2]
deasserted.

– If the address region is Cacheable, all Managers must use transactions with either of AxCACHE[3:2]
asserted.

• Different Managers can use different allocation hints.

• If an addressed region is Normal Non-cacheable, any Manager can access it using a Device memory
transaction.

• If an addressed region has the Bufferable attribute, any Manager can access it using transactions that do not
permit Bufferable behavior. For example, a transaction that requires the response from the final destination
does not permit Bufferable behavior.

A5.3.3 Changing memory attributes

The attributes for a particular memory region can be changed from one type to another incompatible type. For
example, the attribute can be changed from Write-Through Cacheable to Normal Non-cacheable. This change
requires a suitable process to perform the change.

Typically, the following process is performed:

1. All Managers stop accessing the region.

2. A single Manager performs any required cache maintenance operations.

3. All Managers restart accessing the memory region, using the new attributes.

A5.3.4 Transaction buffering

Write access to the following memory types do not require a transaction response from the final destination, but do
require that write transactions are made visible at the final destination in a timely manner:

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78

Chapter A5. Request attributes
A5.3. Memory types

• Device Bufferable

• Normal Non-cacheable Bufferable

• Write-Through

For write transactions, all three memory types require the same behavior.

For read transactions, the required behavior is as follows:

• For Device Bufferable memory, read data must be obtained from the final destination.

• For Normal Non-cacheable Bufferable memory, read data must be obtained either from the final destination
or from a write transaction that is progressing to its final destination.

• For Write-Through memory, read data can be obtained from an intermediate cached copy.

In addition to ensuring that write transactions progress towards their final destination in a timely manner,
intermediate buffers must behave as follows:

• An intermediate buffer that can respond to a transaction must ensure that over time, any read transaction to
Normal Non-cacheable Bufferable propagates towards its destination. This propagation means that when
forwarding a read transaction, the attempted forwarding must not continue indefinitely, and any data that is
used for forwarding must not persist indefinitely. The protocol does not define any mechanism for
determining how long data that is used for forwarding a read transaction, can persist. However, in such a
mechanism, the act of reading the data must not reset the data timeout period.

Without this requirement, continued polling of the same location can prevent the timeout of a read that is
held in the buffer, preventing the read progressing towards its destination.

• An intermediate buffer that can hold and merge write transactions must ensure that transactions do not
remain in its buffer indefinitely. For example, merging write transactions must not reset the mechanism that
determines when a write is drained towards its final destination.

Without this requirement, continued writes to the same location can prevent the timeout of a write held in the
buffer, preventing the write progressing towards its destination.

For information about the required behavior of read accesses to these memory types, see:

• A5.3.1 Device Bufferable

• A5.3.1 Normal Non-cacheable Bufferable

• A5.3.1 Write-Through No-Allocate

A5.3.5 Example use of Device memory types

The specification supports the combined use of Device Non-bufferable and Device Bufferable memory types to
force write transactions to reach their final destination and ensure that the issuing Manager knows when the
transaction is visible to all other Managers.

A write transaction that is marked as Device Bufferable is required to reach its final destination in a timely manner.
However, the write response for the transaction can be signaled by an intermediate buffer. Therefore, the issuing
Manager cannot know when the write is visible to all other Managers.

If a Manager issues a Device Bufferable write transaction, or stream of write transactions, followed by a Device
Non-bufferable write transaction, and all transactions use the same AXI ID, then the AXI ordering requirements
force all of the Device Bufferable write transactions to reach the final destination before a response is given to the
Device Non-bufferable transaction. Therefore, the response to the Device Non-bufferable transaction indicates that
all the transactions are visible to all Managers.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

79

Chapter A5. Request attributes
A5.3. Memory types

A Device Non-bufferable transaction can only guarantee the completion of Device Bufferable transactions that are
issued with the same ID, and are to the same Subordinate device.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

80

Chapter A5. Request attributes
A5.4. Protocol errors

A5.4 Protocol errors

The AXI protocol defines two categories of protocol errors, a software protocol error and a hardware protocol error.

A5.4.1 Software protocol error

A software protocol error occurs when multiple accesses to the same location are made with mismatched
shareability or cacheability attributes. A software protocol error can cause a loss of coherency and result in the
corruption of data values. The protocol requires that the system does not deadlock for a software protocol error,
and that transactions always progress through a system.

A software protocol error for an access in one 4KB memory region must not cause data corruption in a different
4KB memory region. For locations held in Normal memory, the use of appropriate software barriers and cache
maintenance can be used to return memory locations to a defined state.

When accessing a peripheral device, if Modifiable transactions are used (AxCACHE[1] is asserted), then the
correct operation of the peripheral cannot be guaranteed. The only requirement is that the peripheral continues to
respond to transactions in a protocol-compliant manner. The sequence of events that might be needed to return a
peripheral device that has been accessed incorrectly, to a known working state is IMPLEMENTATION DEFINED.

A5.4.2 Hardware protocol error

A hardware protocol error is defined as any protocol error that is not a software protocol error. No support is
required for hardware protocol errors.

If a hardware protocol error occurs, then recovery from the error is not guaranteed. The system might crash, lock
up, or suffer some other non-recoverable failure.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

81

Chapter A5. Request attributes
A5.5. Memory protection and the Realm Management Extension

A5.5 Memory protection and the Realm Management Extension

AXI provides signals that can be used to protect memory against unexpected transactions.

Memory protection can also be extended using the Realm Management Extension (RME). This provides
hardware-based isolation that allows execution contexts to run in different Security states and share resources in
the system.

When RME is used, it extends the address spaces for physically addressed and untranslated transactions, affects
the operation of cache maintenance operations and extends the MPAM signals.

The protection signals are shown in Table A5.5.

Table A5.5: Protection signals

Name Width Default Description

AWPROT,
ARPROT

3 - The Access attributes for a request which can be
used to protect memory against unexpected
transactions.

AWNSE,
ARNSE

1 0b0 Extends the physical address spaces that can be
addressed to include Root and Realm.

The property PROT_Present is used to determine if the AxPROT signals are present on an interface.

A Subordinate that does not use the protection attributes can omit the AxPROT inputs from its interface.

Table A5.6: PROT_Present property

PROT_Present Default Description

True Y AWPROT and ARPROT are present.

False AWPROT and ARPROT are not present.

When RME is used, the RME_Support property is set to True and the AxNSE signals are present on an interface.

Table A5.7: RME_Support property

RME_Support Default Description

True RME is supported, all RME signals are
present on the interface.

False Y RME is not supported. There are no RME
signals present on the interface.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

82

Chapter A5. Request attributes
A5.5. Memory protection and the Realm Management Extension

The protection attributes are split into three parts.

Unprivileged / privileged

An AXI Manager might support more than one level of operating privilege, and can optionally extend this concept
of privilege to memory access.

AxPROT[0] identifies an access as unprivileged or privileged:

• 0b0: Unprivileged

• 0b1: Privileged

Some processors support multiple levels of privilege, see the documentation for the selected processor to
determine the mapping to AXI privilege levels. The only distinction AXI can provide is between privileged and
unprivileged access.

Security attribute

If an AXI Manager supports different security operating states, it can extend this to its memory accesses using the
security attribute. Requests with different security attributes can be considered as occupying different address
spaces, so the same address can decode to a different location depending on the security attribute.

The AxPROT[1] and AxNSE signals are used to define the security attribute as shown in Table A5.8.

Table A5.8: Security attribute

AxNSE AxPROT[1] Security attribute

0 0 Secure

0 1 Non-secure

1 0 Root

1 1 Realm

The AxNSE signals are only present when the RME_Support property is True. If RME_Support is False, only
Secure and Non-secure address spaces are accessible.

Instruction / data

AxPROT[2] indicates that the transaction is an instruction access or a data access.

• 0b0: Data access

• 0b1: Instruction access

The AXI protocol defines this indication as a hint. It is not accurate in all cases, for example, where a transaction
contains a mix of instruction and data items. It is recommended that a Manager sets AxPROT[2] LOW to indicate
a data access unless the access is known to be an instruction access.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

83

Chapter A5. Request attributes
A5.6. Memory Encryption Contexts

A5.6 Memory Encryption Contexts

Memory Encryption Contexts (MEC) is an extension to the Arm Realm Management Extension (RME) that allows
each Realm to have its own unique encryption context. The MEC extension assigns memory encryption contexts
to all memory accesses within the Realm Physical Address Space. All memory transactions are associated with
a MECID which is determined by the Security state, translation regime, translation tables and the MEC system
registers. The MECID is used by a memory encryption engine as an index into a table of encryption contexts,
either keys or tweaks, that contribute to the external memory encryption.

Use of MEC can help protect Realm data in memory, by enabling each set of Realm data to be encrypted in a
different way. This means that a malicious agent that has access to the physical memory device and is able to
decipher one set of Realm data, cannot use the same decryption method to access other sets of Realm data. Before
the Point of Encryption (PoE) the data that moves between components is in plaintext form.

Realm management software at R-EL2 controls MECID policy and assignment to Realms.

For more information on MEC, see [3] and [4].

Note that the MEC architecture specification [3] details several implementation options for when a MECID value
mismatch occurs. This MEC implementation assumes that Managers and caches do not perform any MECID
checks. For example, if a read access associated with a MECID targets a location that has a copy present in a cache
and is associated with a different MECID, the read access succeeds as though the MECID values did not mismatch.
Additional protection is not needed here as Realm management software at R-EL2 ensures that one context can be
prevented from accessing locations that belong to a different context, thus ensuring plantext leakages do not occur.

A5.6.1 MEC signaling

The MEC_Support property determines whether an interface supports Memory Encryption Contexts.

Table A5.9: MEC_Support property

MEC_Support Default Description

True MEC is supported, AxMECID signals are present.

False Y MEC is not supported, AxMECID signals are not
present.

MEC is an extension of RME, so if the RME_Support property is False, MEC_Support must be False.

The following signals are required to support MEC.

Table A5.10: MECID signals

Name Width Default Description

AWMECID,
ARMECID

MECID_WIDTH All zeros RME Memory Encryption Context identifier
(MECID).

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

84

Chapter A5. Request attributes
A5.6. Memory Encryption Contexts

The parameter MECID_WIDTH defines the width of the AxMECID signals.

Table A5.11: MECID_WIDTH property

Name Values Default Description

MECID_WIDTH 0, 16 0 Width of AWMECID and ARMECID in bits.

The following rules apply to the MECID_WIDTH property:

• If MECID_WIDTH is 0, AWMECID and ARMECID are not present on the interface.

• If MEC_Support is False, MECID_WIDTH must be 0.

• If MEC_Support is True, MECID_WIDTH must not be 0.

Note that the width of MECID does not indicate how many different values are used by a component. It might be
possible to reduce the storage requirements of MECID by using a narrower internal width.

If the MECID bit width differs at the interface between two components, it can be zero-extended or have the
most-significant bits truncated, as appropriate. This adjustment will produce correct MEC operation only where
the common MECID width is set to be the minimal MECID width supported by any MEC-capable component in
the system.

The compatibility between Manager and Subordinate interfaces according to the values of the MEC_Support
property is shown in Table A5.12.

Table A5.12: MEC_Support compatibility

MEC_Support Subordinate: False Subordinate: True

Manager: False Compatible. Compatible.
AxMECID inputs are tied LOW.

Manager: True Compatible.
Downstream memory is not encrypted
using MEC.

Compatible.

A5.6.2 MECID usage

The MECID value range is bounded, dependent on the Physical Address Space being accessed.

Table A5.13: Possible MECID values in each Physical Address Space

AxNSE AxPROT[1] Physical Address Space MECID

0b0 0b0 Secure Must be 0

0b0 0b1 Non-secure Must be 0

0b1 0b0 Root Must be 0

0b1 0b1 Realm Any value

MECID is inapplicable and can take any value for the following request Opcodes:

• CMO

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

85

Chapter A5. Request attributes
A5.6. Memory Encryption Contexts

• CleanInvalid

• MakeInvalid

• CleanShared

• CleanSharedPersist

• InvalidateHint

• StashTranslation

• UnstashTranslation

MECID is inapplicable and must be 0 for the following request Opcodes:

• DVM Complete

Components that propagate transactions and support MECID on their Subordinate and Manager interfaces must
preserve the MECID on requests where it is applicable. Components that perform address translation might
change the MECID.

A cache that stores data which has an associated MECID must also store the MECID and provide it with the data
during a write-back.

A CleanInvalidPoPA operation can be used to ensure that a cache line is cleaned and invalidated from all caches
upstream of the Point of Encryption. See A10.9 Cache Maintenance and Realm Management Extension for more
information on CleanInvalidPoPA.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

86

Chapter A5. Request attributes
A5.7. Multiple region interfaces

A5.7 Multiple region interfaces

This section describes the use of a region identifier with a request, to support interfaces with multiple address
regions within a single interface.

A5.7.1 Region identifier signaling

The property REGION_Present determines whether an interface supports region identifier signaling.

Table A5.14: REGION_Present property

REGION_Present Default Description

True Y AWREGION and ARREGION are present.

False AWREGION and ARREGION are not
present.

The signals to indicate a region are shown in Table A5.15.

Table A5.15: Region signals

Name Width Default Description

AWREGION,
ARREGION

4 0x0 A 4-bit region identifier which can be used to
identify different address regions.

A5.7.2 Using the region identifier

The 4-bit region identifier can be used to uniquely identify up to 16 different regions. The region identifier can
provide a decode of higher-order address bits. The region identifier must remain constant within any 4K-byte
address space.

The use of region identifiers means that a single physical interface on a Subordinate can provide multiple logical
interfaces, each with a different location in the system address map. The use of the region identifier means that the
Subordinate does not have to support the address decode between the different logical interfaces.

This specification expects an interconnect to produce AxREGION signals when performing the address decode
function for a single Subordinate that has multiple logical interfaces. If a Subordinate only has a single physical
interface in the system address map, the interconnect must use the default AxREGION values.

There are several usage models for the region identifier including, but not limited to, the following:

• A peripheral can have its main data path and control registers at different locations in the address map, and
be accessed through a single interface without the need for the Subordinate to perform an address decode.

• A Subordinate can exhibit different behaviors in different memory regions. For example, a Subordinate
might provide read and write access in one region, but read-only access in another region.

A Subordinate must ensure that the correct protocol signaling and the correct ordering of transactions are
maintained. A Subordinate must ensure that it provides the responses to two requests to different regions with the
same transaction ID in the correct order.

A Subordinate must also ensure the correct protocol signaling for any values of AxREGION. If a Subordinate
implements fewer than sixteen regions, then the Subordinate must ensure the correct protocol signaling on any

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

87

Chapter A5. Request attributes
A5.7. Multiple region interfaces

attempted access to an unsupported region. How this is achieved is IMPLEMENTATION DEFINED. For example, the
Subordinate might ensure this by:

• Providing an error response for any transaction that accesses an unsupported region.

• Aliasing supported regions across all unsupported regions, to ensure that a protocol-compliant response is
given for all accesses.

The AxREGION signals only provide an address decode of the existing address space that can be used by
Subordinates to remove the need for an address decode function. The signals do not create new independent
address spaces. AxREGION must only be present on an interface that is downstream of an address decode
function.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

88

Chapter A5. Request attributes
A5.8. QoS signaling

A5.8 QoS signaling

AXI supports Quality of Service (QoS) schemes through the features of:

• A5.8.1 QoS identifiers

• A5.8.2 QoS acceptance indicators

A5.8.1 QoS identifiers

An AXI request has an optional identifier which can be used to distinguish between different traffic streams as
shown in Table A5.16.

Table A5.16: QoS signals

Name Width Default Description

AWQOS,
ARQOS

4 0x0 Quality of Service identifier used to distinguish
between different traffic streams.

The QOS_Present property is used to define whether an interface includes the AxQOS signals.

Table A5.17: QOS_Present property

QOS_Present Default Description

True Y AWQOS and ARQOS are present.

False AWQOS and ARQOS are not present.

The protocol does not specify the exact use of the QoS identifier. It is recommended to use AxQOS as a priority
indicator for the associated write or read request, where a higher value indicates a higher priority request.

Using the QoS identifiers

A Manager can produce its own AxQOS values, and if it can produce multiple streams of traffic, it can choose
different QoS values for the different streams.

Support for QoS requires a system-level understanding of the QoS scheme in use, and collaboration between all
participating components. For this reason, it is recommended that a Manager component includes some
programmability that can be used to control the exact QoS values that are used for any given scenario.

If a Manager component does not support a programmable QoS scheme, it can use QoS values that represent the
relative priorities of the transactions it generates. These values can then be mapped to alternative system level QoS
values if appropriate.

This specification expects that many interconnect component implementations will support programmable
registers that can be used to assign QoS values to connected Managers. These values replace the QoS values,
either programmed or default, supplied by the Managers.

The default system-level implementation of QoS is that any component with a choice of more than one transaction
to process selects the request with the higher QoS value to process first. This selection only occurs when there is
no other AXI constraint that requires the requests to be processed in a particular order. This means that the AXI
ordering rules take precedence over ordering for QoS purposes.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

89

Chapter A5. Request attributes
A5.8. QoS signaling

A5.8.2 QoS acceptance indicators

The QoS acceptance indicators as shown in Table A5.18 are output signals from a Subordinate interface that
indicate the minimum QoS value it will accept without delay.

The signals are synchronous to ACLK but are unrelated to any other AXI channel.

Table A5.18: QoS acceptance signals

Name Width Default Description

VAWQOSACCEPT 4 0x0 An output from a Subordinate that indicates the
QoS value for which it accepts requests from the
AW channel.

VARQOSACCEPT 4 0x0 An output from a Subordinate that indicates the
QoS value for which it accepts requests from the
AR channel.

QoS Accept signaling is intended for Subordinate components that have different resources available for different
QoS values, which is typically the case with memory controllers. The Subordinate can indicate that it only accepts
requests at a certain QoS value or above when the resources available to lower QoS values are in use.

QoS Accept signaling can be used as an input to a Manager interface that might have several different requests to
select from. This permits the Manager interface to only issue requests that are likely to be accepted, which avoids
unnecessary blocking of the interface. By preventing the issue of requests that might be stalled for a significant
period, the interface remains available for the issue of higher priority requests that might arrive at a later point in
time.

In this specification, the term VAxQOSACCEPT refers collectively to the VAWQOSACCEPT and
VARQOSACCEPT signals.

The rules and recommendations for the VAxQOSACCEPT signals are:

• Any requests with QoS level equal to or higher than VAxQOSACCEPT are accepted by the Subordinate.

• Any request with QoS level below VAxQOSACCEPT might be stalled for a significant time.

This specification does not define a time period during which the Subordinate is required to accept a
request at, or above, the QoS level indicated. However, it is expected that for a given Subordinate there
will be a deterministic maximum number of clock cycles taken to accept a transaction, after taking into
account implementation aspects such as clock domain crossing ratios.

• It is permitted for a Subordinate interface to accept a request that is below the QoS level indicated by the
VAxQOSACCEPT signal, but it is expected that the request might be subject to a significant delay.

While it is acceptable for a Subordinate to delay a request that has a lower priority than the QoS
acceptance level, it is recommended that such a transaction is not delayed indefinitely.

There are several reasons for a lower-priority transaction to be issued on the interface, for example:

• A delay between a change in the QoS acceptance value and the ability of the component to adapt to that
change.

• A requirement to make progress on a transaction that is Head-of-line blocking a higher priority request.

• A requirement to make progress on a transaction for reasons of starvation prevention.

The QoS_Accept property as shown in Table A5.19 is used to define whether an interface includes the QoS accept
indicator signals.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

90

Chapter A5. Request attributes
A5.8. QoS signaling

Table A5.19: QoS_Accept property

QoS_Accept Default Description

True The interface includes VAWQOSACCEPT and
VARQOSACCEPT signals.

False Y The interface does not include VAWQOSACCEPT
or VARQOSACCEPT signals.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

91

Chapter A6
Transaction identifiers and ordering

This chapter describes transaction identifiers and how they can be used to control the ordering of transactions.

It contains the following sections:

• A6.1 Transaction identifiers

• A6.2 Unique ID indicator

• A6.3 Request ordering

• A6.4 Interconnect use of transaction identifiers

• A6.5 Write data and response ordering

• A6.6 Read data ordering

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

92

Chapter A6. Transaction identifiers and ordering
A6.1. Transaction identifiers

A6.1 Transaction identifiers

The AXI protocol includes a transaction identifier (AXI ID). A Manager can use the AXI ID to identify
transactions that must be returned in order.

All transactions with a given AXI ID value must remain ordered, but there is no restriction on the ordering of
transactions with different ID values. A single physical port can support out-of-order transactions by acting as
several logical ports, each handling its transactions in order.

By using AXI IDs, a Manager can issue transactions without waiting for earlier transactions to complete. This can
improve system performance because it enables parallel processing of transactions.

A6.1.1 Transaction ID signals

The read and write request, read data, and write response channels include a transaction ID signal.

Table A6.1: ID signals

Name Width Default Description

AWID,
BID

ID_W_WIDTH All zeros Transaction identifier used for the ordering of write
requests and responses.

ARID,
RID

ID_R_WIDTH All zeros Transaction identifier used for the ordering of read
requests, responses, and data.

The ID width properties are described in Table A6.2.

Table A6.2: ID width properties

Name Values Default Description

ID_W_WIDTH 0..32 - ID width on write channels in bits, applies to AWID and
BID.

ID_R_WIDTH 0..32 - ID width on read channels in bits, applies to ARID and
RID.

If a width property is zero, the associated signal is not present.

A Manager that does not support reordering of its requests and responses, or has only one outstanding transaction,
can omit the ID signals from its interface. An attached Subordinate must have its AxID inputs tied LOW.

A Subordinate that does not reorder requests or responses does not need to use ID values.

If a Subordinate does not include ID signals, it cannot be connected to a Manager that does have ID signals,
because the Manager requires BID and RID to be reflected from AWID and ARID.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

93

Chapter A6. Transaction identifiers and ordering
A6.2. Unique ID indicator

A6.2 Unique ID indicator

The unique ID indicator is an optional flag that indicates when a request on the read or write address channels is
using an AXI identifier that is unique for in-flight transactions. A corresponding signal is also on the read and
write response channels to indicate that a transaction is using a unique ID.

The unique ID indicator can be used downstream of the AXI Manager to determine when a request needs to be
ordered with respect to other requests from that Manager. Requests that do not require ordering might not require
tracking in downstream components.

The Unique_ID_Support property is used to indicate whether an interface supports unique ID indication.

Table A6.3: Unique_ID_Support property

Unique_ID_Support Default Description

True Unique ID indicator signals are present on
the interface.

False Y Unique ID indicator signals are not present
on the interface.

When Unique_ID_Support is True, the following signals are included on the read request, read data, write request,
and write response channels.

Table A6.4: Unique ID indicator signals

Name Width Default Description

AWIDUNQ,
BIDUNQ,
ARIDUNQ,
RIDUNQ

1 0b0 If asserted high, the ID for this transfer is
unique-in-flight.

The following rules apply to the unique ID indicators:

• When AWIDUNQ is asserted, there must be no outstanding write transactions from this Manager with the
same AWID value.

• A Manager must not issue a write request with the same AWID as an outstanding write transaction that had
AWIDUNQ asserted.

• If AWIDUNQ is deasserted for a request, the corresponding BIDUNQ signal must be deasserted in a single
transfer response or the Completion part of a multi-transfer response.

• If AWIDUNQ is asserted for a request, the corresponding BIDUNQ signal must be asserted in a single
transfer response or the Completion part of a multi-transfer response.

• When ARIDUNQ is asserted, there must be no outstanding read transactions from this Manager with the
same ARID value.

• A Manager must not issue a read request with the same ARID as an outstanding read transaction that had
ARIDUNQ asserted.

• If ARIDUNQ is deasserted for a request, the corresponding RIDUNQ signal must be deasserted for all
response transfers for that transaction.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

94

Chapter A6. Transaction identifiers and ordering
A6.2. Unique ID indicator

• If ARIDUNQ is asserted for a request, the corresponding RIDUNQ signal must be asserted for all response
transfers for that transaction.

• For an Atomic transaction that includes read and write responses, additional rules apply:

– If AWIDUNQ is deasserted for an Atomic request, the corresponding RIDUNQ signal must be
deasserted for all response transfers for that transaction.

– If AWIDUNQ is asserted for an Atomic request, the corresponding RIDUNQ signal must be asserted
for all response transfers for that transaction.

A transaction is outstanding from the cycle that had AxVALID asserted until the cycle when the final response
transfer is accepted by the Manager. If an interface includes BCOMP, the transaction is considered to be
outstanding until a response is received with BCOMP asserted.

An Atomic transaction is outstanding until both write and read responses are accepted by the Manager, see A7.4
Atomic transactions.

Some transaction types specify that AxIDUNQ is required to be asserted, if present. If not specified, asserting
AxIDUNQ is optional, even if there are no outstanding transactions using the same ID.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

95

Chapter A6. Transaction identifiers and ordering
A6.3. Request ordering

A6.3 Request ordering

The AXI request ordering model is based on the use of the transaction identifier, which is signaled on ARID or
AWID.

Transaction requests on the same channel, with the same ID and destination are guaranteed to remain in order.

Transaction responses with the same ID are returned in the same order as the requests were issued.

The ordering model does not give any ordering guarantees between:

• Transactions from different Managers

• Read and write transactions

• Transactions with different IDs

• Transactions to different Peripheral regions

• Transactions to different Memory locations

If a Manager requires ordering between transactions that have no ordering guarantee, the Manager must wait to
receive a response to the first transaction before issuing the second transaction.

A6.3.1 Memory locations and Peripheral regions

The address map in AMBA is made up of Memory locations and Peripheral regions.

A Memory location has all of the following properties:

• A read of a byte from a Memory location returns the last value that was written to that byte location.

• A write to a byte of a Memory location updates the value at that location to a new value that is obtained by a
subsequent read of that location.

• Reading or writing to a Memory location has no side-effects on any other Memory location.

• Observation guarantees for Memory are given for each location.

• The size of a Memory location is equal to the single-copy atomicity size for that component.

A Peripheral region has all of the following properties:

• A read from an address in a Peripheral region does not necessarily return the last value that was written to
that address.

• A write to a byte address in a Peripheral region does not necessarily update the value at that address to a new
value that is obtained by subsequent reads.

• Accessing an address within a Peripheral region might have side-effects on other addresses within that
region.

• Observation guarantees for Peripherals are given per region.

• The size of a Peripheral region is IMPLEMENTATION DEFINED but it must be contained within a single
Subordinate component.

A transaction can be to one or more address locations. The locations are determined by AxADDR and any
relevant qualifiers such as the address space.

• Ordering guarantees are given only between accesses to the same Memory location or Peripheral region.

• A transaction to a Peripheral region must be entirely contained within that region.

• A transaction that spans multiple Memory locations has multiple ordering guarantees.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

96

Chapter A6. Transaction identifiers and ordering
A6.3. Request ordering

A6.3.2 Device and Normal requests

Transactions can be either of type Device or Normal.

Device

A read or write where the request has AxCACHE[1] deasserted.

Device transactions can be used to access Peripheral regions or Memory locations.

Normal

A read or write where the request has AxCACHE[1] asserted.

Normal transactions are used to access Memory locations and are not expected to be used to access Peripheral
regions.

A Normal access to a Peripheral region must complete in a protocol-compliant manner, but the result is
IMPLEMENTATION DEFINED.

A6.3.3 Observation and completion definitions

For accesses to Peripheral regions, a Device read or write access DRW1 is observed by a Device read or write
access DRW2, when DRW1 arrives at the Subordinate component before DRW2.

For accesses to Memory locations, all of the following apply:

• A write W1 is observed by a write W2, if W2 takes effect after W1.

• A read R1 is observed by a write W2, if R1 returns data from a write W3, when W2 is after W3.

• A write W1 is observed by a read R2, if R2 returns data from either W1 or from write W3, when W3 is after
W1.

Read R1 or write W1 can be of type Device or Normal.

The definitions of write and read completions are:

Write completion response

The cycle when the associated BRESP handshake is given, when BVALID, BREADY and BCOMP (if present)
are asserted.

Read completion response

The cycle when the last associated RDATA handshake is given, when RVALID, RLAST and RREADY are
asserted.

A6.3.4 Manager ordering guarantees

There are three types of ordering model guarantees:

• Observability guarantees before a completion response is received.

• Observability guarantees from a completion response.

• Response ordering guarantees.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

97

Chapter A6. Transaction identifiers and ordering
A6.3. Request ordering

Observability guarantees before a completion response is received

All of the following guarantees apply to transactions from the same Manager using the same ID:

• A Device write DW1 is guaranteed to arrive at the destination before Device write DW2, where DW2 is
issued after DW1 and to the same Peripheral region.

• A Device read DR1 is guaranteed to arrive at the destination before Device read DR2, where DR2 is issued
after DR1 and to the same Peripheral region.

• A write W1 is guaranteed to be observed by a write W2, where W2 is issued after W1 and to the same
Memory location.

• A write W1 that has been observed by a read R2 is guaranteed to be observed by a read R3, where R3 is
issued after R2 and to the same Memory location.

Observability guarantees from a completion response

The guarantees from a completion response are as follows:

• For a read request, the completion response guarantees that it is observable to a subsequent read or write
request from any Manager.

• For a Non-bufferable write request, the completion response guarantees that it is observable to a subsequent
read or write request from any Manager.

• For a Bufferable write request, the completion response can be sent from an intermediate point. It does not
guarantee that the write has completed at the endpoint but does guarantee observability, depending on the
Domain of the request:

– Non-shareable: observable to the issuing Manager only.

– Shareable: observable to all other Managers in the Shareable Domain.

– System: observable to all other Managers.

For more information on Domains, see A9.3 Cache coherency and Domains.

Response ordering guarantees

Transaction responses have all the following ordering guarantees:

• A read R1 is guaranteed to receive a response before the response to a read R2, where R2 is issued from the
same Manager after R1 with the same ID.

• A write W1 is guaranteed to receive a response before the response to a write W2, where W2 is issued from
the same Manager after W1 with the same ID.

A6.3.5 Subordinate ordering requirements

To meet the Manager ordering guarantees, Subordinate interfaces must meet the following requirements.

Peripheral locations

For Peripheral locations, the execution order of transactions to Peripheral locations is IMPLEMENTATION
DEFINED. This execution order is typically expected to match the arrival order but that is not a requirement.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

98

Chapter A6. Transaction identifiers and ordering
A6.3. Request ordering

Memory locations

• A write W1 must be ordered before a write W2 with the same ID to the same Memory location, where W2 is
received after W1 is received.

• A write W1 must be ordered before a write W2 to the same Memory location, where W2 is received after the
completion response for W1 is given.

• A write W1 must be ordered before a read R2 to the same Memory location, where R2 is received after the
completion response for W1 is given.

• A read R1 must be ordered before a write W2 to the same Memory location, where W2 is received after the
completion response for R1 is given.

Response ordering requirements

• The response to read R1 must be returned before the response to a read R2, where R2 is received after R1
with the same ID.

• The response to write W1 must be returned before the response to a write W2, where W2 is received after
W1 with the same ID.

A6.3.6 Interconnect ordering requirements

An interconnect component has the following attributes:

• A request is received on one port and is either issued on a different port or responded to.

• A response is received on one port and is either issued on a different port or consumed.

When the interconnect issues requests or responses, it must adhere to the following requirements:

• A read R1 request must be issued before a read R2 request, where R2 is received after R1, with the same ID
and to the same or overlapping locations.

• A write W1 request must be issued before a write W2 request, where W2 is received after W1, with the same
ID, to the same or overlapping locations.

• A Device read DR1 request must be issued before a Device read DR2 request, where DR2 is received after
DR1, with the same ID and to the same Peripheral region.

• A Device write DW1 request must be issued before a Device write DW2 request, where DW2 is received
after DW1, with the same ID and to the same Peripheral region.

• A read R1 response must be issued before a read R2 response, where R2 is received after R1, with the same
ID.

• A write W1 response must be issued before a write W2 response, where W2 is received after W1, with the
same ID.

When the interconnect is acting as a Subordinate component, it must also adhere to the Subordinate requirements.

Any manipulation of the AXI ID values that are associated with a transaction must ensure that the ordering
requirements of the original ID values are maintained.

A6.3.7 Response before the endpoint

To improve system performance, it is possible for an intermediate component to issue a response to some
transactions. This action is known as an early response. The intermediate component issuing an early response
must ensure that visibility and ordering guarantees are met.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

Chapter A6. Transaction identifiers and ordering
A6.3. Request ordering

Early read response

For Normal read transactions, an intermediate component can respond with read data from a local memory if it is
up to date with respect to all earlier writes to the same or overlapping address. In this case, the request is not
required to propagate beyond the intermediate component.

An intermediate component must observe ID ordering rules, which means a read response can only be sent if all
earlier reads with the same ID have already had a response.

Early write response

For Bufferable write transactions (AWCACHE[0] is asserted), an intermediate component can send an early write
response for transactions that have no downstream observers. If the intermediate component sends an early write
response, the intermediate component can store a local copy of the data, but must propagate the transaction
downstream, before discarding that data.

An intermediate component must observe ID ordering rules, which means a write response can only be sent if all
earlier writes with the same ID have already had a response.

After sending an early write response, the component must be responsible for ordering and observability of that
transaction until the write has been propagated downstream, and a write response is received. During the period
between sending the early write response and receiving a response from downstream, the component must ensure
that:

• If an early write response was given for a Normal transaction, all subsequent transactions to the same or
overlapping Memory locations are ordered after the write that has had an early response.

• If an early write response was given for a Device transaction, then all subsequent transactions to the same
Peripheral region are ordered after the write that has had an early response.

When giving an early write response for a Device Bufferable transaction, the intermediate component is expected
to propagate the write transaction without dependency on other transactions. The intermediate component cannot
wait for another read or write to arrive before propagating a previous Device write.

A6.3.8 Ordering between requests with different memory types

There are no ordering requirements between Cacheable requests and Device or Non-cacheable Normal requests.

Ordering requirements between Device and Normal Non-cacheable requests depends on the
Device_Normal_Independence property.

Table A6.5: Device_Normal_Independence property

Device_Normal_Independence Default Description

True A Device request is permitted to overtake, or be overtaken by, a
Normal Non-cacheable request with the same ID to the same
location.

False Y Device and Normal Non-cacheable requests with the same ID, to
the same location must be observed in issue order.

Guidance for connecting Manager and Subordinate interfaces with different values of
Device_Normal_Independence is shown in Table A6.6.

Table A6.6: Device_Normal_Independence interoperability

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

100

Chapter A6. Transaction identifiers and ordering
A6.3. Request ordering

Subordinate: False Subordinate: True

Manager: False Compatible. Incompatible.
The Subordinate might not meet the ordering
requirements of the Manager.

Manager: True Compatible.
The Subordinate might enforce stricter
ordering than required.

Compatible.

A6.3.9 Ordered write observation

To improve compatibility with interface protocols that support a different ordering model, a Subordinate interface
can give stronger ordering guarantees for write transactions, known as Ordered Write Observation.

The Ordered_Write_Observation property is used to define whether an interface has Ordered Write Observation.

Table A6.7: Ordered_Write_Observation property

Ordered_Write_Observation Default Description

True The interface exhibits Ordered Write Observation.

False Y The interface does not exhibit Ordered Write Observation.

An interface that exhibits Ordered Write Observation gives guarantees for write transactions that are not dependent
on the destination or address:

• A write W1 is guaranteed to be observed by a write W2, where W2 is issued after W1, from the same
Manager, with the same ID.

When using Ordered Write Observation, a Manager can issue multiple write requests without waiting for write
responses, and they are observed in issue order. This can result in improved performance when using the
Producer-Consumer ordering model.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

101

Chapter A6. Transaction identifiers and ordering
A6.4. Interconnect use of transaction identifiers

A6.4 Interconnect use of transaction identifiers

When a Manager is connected to an interconnect, the interconnect appends additional bits to the AWID and ARID
identifiers that are unique to that Manager port. This has two effects:

• Managers do not have to know what ID values are used by other Managers because the interconnect makes
the ID values used by each Manager unique by appending the Manager number to the original identifier.

• The ID identifier at a Subordinate interface is wider than the ID identifier at a Manager interface.

For write responses, the interconnect uses the additional bits of the BID identifier to determine which Manager
port the write response is destined for. The interconnect removes these bits of the BID identifier before passing the
BID value to the correct Manager port.

For read data, the interconnect uses the additional bits of the RID identifier to determine which Manager port the
read data is destined for. The interconnect removes these bits of the RID identifier before passing the RID value to
the correct Manager port.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

102

Chapter A6. Transaction identifiers and ordering
A6.5. Write data and response ordering

A6.5 Write data and response ordering

The Subordinate must ensure that the BID value of a write response matches the AWID value of the request that it
is responding to.

A Manager must issue write data in the same order that it issues the transaction requests.

An interconnect that combines write transactions from different Managers must ensure that it forwards the write
data in request order. The interleaving of write data transfers from different transactions is not permitted.

The interconnect must ensure that write responses from a sequence of transactions with the same AWID value
targeting different Subordinates are received by the Manager in request order.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

103

Chapter A6. Transaction identifiers and ordering
A6.6. Read data ordering

A6.6 Read data ordering

The Subordinate must ensure that the RID value of any returned data matches the ARID value of the request that
it is responding to.

The interconnect must ensure that read data from a sequence of transactions with the same ARID value targeting
different Subordinates are received by the Manager in request order.

The read data reordering depth is the maximum number of accepted requests for which a Subordinate might send
read data. A Subordinate that sends read data in the same order as the requests were received has a read data
reordering depth of one.

The read data reordering depth is a static value that can be specified by the designer of the Subordinate.

There is no mechanism for a Manager to dynamically determine the read data reordering depth of a Subordinate.

A6.6.1 Read data interleaving

AXI ordering permits read data transfers with different ID values to be interleaved. This applies to all transactions
that can have multiple read data transfers, including Atomic transactions.

Some AXI Manager and interconnect components can be more efficiently designed if it is determined at
design-time whether the attached Subordinate interface will interleave read data from different transactions.

The property Read_Interleaving_Disabled is used to indicate whether an interface supports the interleaving of read
data transfers from different transactions.

Table A6.8: Read_Interleaving_Disabled property

Read_Interleaving_Disabled Default Description

True A Manager interface is not capable of receiving read data that is
interleaved.
A Subordinate interface is guaranteed not to interleave read data.

False Y A Manager interface is capable of receiving read data that is
interleaved.
A Subordinate interface might interleave data from read
transactions with different ARID values.

For some interfaces, this property can be used as a configuration control, for others it is a capability indicator. All
Managers that issue transactions with different IDs must be designed to accept interleaved data. Managers might
use the configuration option to disable interleaving as an optimization when the attached Subordinate supports the
disabling of interleaving.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

104

Chapter A6. Transaction identifiers and ordering
A6.6. Read data ordering

A6.6.2 Read data chunking

The read data chunking option enables a Subordinate interface to reorder read data within a transaction using a
128b granule. The start address might be used as a hint to determine which chunk to send first, but the Subordinate
is permitted to return chunks of data in any order.

The property Read_Data_Chunking is used to indicate whether an interface supports the return of read data in
reorderable chunks.

Table A6.9: Read_Data_Chunking property

Read_Data_Chunking Default Description

True Read data chunking is supported.

False Y Read data chunking is not supported, no chunking signals are
present.

A6.6.2.1 Read data chunking signaling

When read data chunking is supported, the following signals as shown in Table A6.10 are added to the read request
and data channel.

Table A6.10: Read data chunking signals

Name Width Default Description

ARCHUNKEN 1 0b0 If asserted in a read request, the Subordinate can
send read data in 128b chunks.

RCHUNKV 1 0b0 Asserted high to indicate that RCHUNKNUM and
RCHUNKSTRB are valid. It must be the same for
every response of the transaction.

RCHUNKNUM RCHUNKNUM_WIDTH All zeros Indicates the chunk number being transferred.
Chunks are numbered incrementally from zero,
according to the data width and base address of
the transaction.

RCHUNKSTRB RCHUNKSTRB_WIDTH All ones Indicates the read data chunks that are valid for
this transfer.
Each bit corresponds to 128 bits of data. The least
significant bit of RCHUNKSTRB corresponds to
the least significant 128 bits of RDATA.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

105

Chapter A6. Transaction identifiers and ordering
A6.6. Read data ordering

The RCHUNKNUM_WIDTH property defines the width of the RCHUNKNUM signal.

Table A6.11: RCHUNKNUM_WIDTH property

Name Values Default Description

RCHUNKNUM_WIDTH 0, 1, 5, 6, 7, 8 0 Width of RCHUNKNUM in bits.
Must be 0 if Read_Data_Chunking == False else
0 or 1 if DATA_WIDTH < 128
8 if DATA_WIDTH == 128
7 if DATA_WIDTH == 256
6 if DATA_WIDTH == 512
5 if DATA_WIDTH == 1024

The RCHUNKSTRB_WIDTH property defines the width of the RCHUNKSTRB signal.

Table A6.12: RCHUNKSTRB_WIDTH property

Name Values Default Description

RCHUNKSTRB_WIDTH 0, 1, 2, 4, 8 0 Width of RCHUNKSTRB in bits.
Must be 0 if Read_Data_Chunking == False else
0 or 1 if DATA_WIDTH < 256
2 if DATA_WIDTH == 256
4 if DATA_WIDTH == 512
8 if DATA_WIDTH == 1024

Interfaces with a small DATA_WIDTH can include RCHUNKNUM and RCHUNKSTRB signals as 1-bit wide
or omit them from the interface. When using interface protection, the RCHUNKCHK signal covers both of these
signals, so RCHUNKNUM and RCHUNKSTRB must be the same width for connected components.

It is recommended that RCHUNKNUM and RCHUNKSTRB are omitted if not required by the interface.

A6.6.2.2 Read data chunking protocol rules

In the read data chunking protocol, all the following rules apply:

• ARCHUNKEN must only be asserted for transactions with the following attributes:

– Size is equal to the data channel width, or Length is one transfer.

– Size is 128 bits or larger.

– Addr is aligned to 16 bytes.

– Burst is INCR or WRAP.

– Opcode is ReadNoSnoop, ReadOnce, ReadOnceCleanInvalid, or ReadOnceMakeInvalid.

• The ID value must be unique-in-flight, which means:

– ARCHUNKEN can only be asserted if there are no outstanding read transactions using the same ARID
value.

– The Manager must not issue a request on the read channel with the same ARID as an outstanding
request that had ARCHUNKEN asserted.

– If present on the interface, ARIDUNQ must be asserted if ARCHUNKEN is asserted.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

106

Chapter A6. Transaction identifiers and ordering
A6.6. Read data ordering

• If ARCHUNKEN is deasserted, RCHUNKV must be deasserted for all response transfers of the
transaction.

• If ARCHUNKEN is asserted, RCHUNKV can be asserted for response transfers of the transaction.

• RCHUNKV must be the same for every response transfer of a transaction.

• When RVALID and RCHUNKV are asserted, RCHUNKNUM must be between zero and ARLEN.

• When RVALID and RCHUNKV are asserted, RCHUNKSTRB must not be zero.

• When RVALID and RCHUNKV are asserted, RLAST must only be asserted for the final response transfer
of the transaction, irrespective of RCHUNKNUM and RCHUNKSTRB.

• When RVALID is asserted and RCHUNKV is deasserted, RCHUNKNUM and RCHUNKSTRB can take
any value.

The number of data chunks transferred must be consistent with ARLEN and ARSIZE, so the number of bytes
transferred in a transaction is the same whether chunking is enabled or not. Note that when using read data
chunking, a transaction might have more read data transfers than indicated by ARLEN.

For unaligned transactions, chunks at addresses lower than ARADDR are not transferred and must have
RCHUNKSTRB deasserted.

A6.6.2.3 Interoperability

If a Manager supports read data chunking, then downstream interconnect and Subordinates can reduce their
buffering if they also support chunking. An interconnect which connects to components with a mixture of
chunking support can drive ARCHUNKEN and RCHUNKV according to the capabilities of the attached
components.

When connecting interfaces with different values for the Read_Data_Chunking property, the following rules apply
as shown in Table A6.13.

Table A6.13: Read_Data_Chunking interoperability

Subordinate: False Subordinate: True

Manager: False

ARCHUNKEN is not present. Subordinate ARCHUNKEN input is tied
low.

RCHUNKV is not present. Subordinate RCHUNKV output is
unconnected.

RCHUNKNUM is not present. Subordinate RCHUNKNUM output is
unconnected.

RCHUNKSTRB is not present. Subordinate RCHUNKSTRB output is
unconnected.

Full data transfers are sent in natural order. Full data transfers are sent in natural order.

Manager: True

Manager ARCHUNKEN output is
unconnected.

Chunking signals are connected.

Manager RCHUNKV input is tied low. Read data can be reordered and sent in
chunks.

Manager RCHUNKNUM input is tied.

Manager RCHUNKSTRB input is tied.

Full data transfers are sent in natural order.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

107

Chapter A6. Transaction identifiers and ordering
A6.6. Read data ordering

A6.6.2.4 Chunking examples

In these examples, each row in the figure represents a transfer and the shaded cells indicate bytes that are not
transferred.

Figure A6.1 shows a transaction on a 256-bit width read data channel where:

• Addr is 0x00.
• Length is 2 transfers.
• Size is 256 bits.
• Burst is INCR.

RCHUNKNUM = 1; RCHUNKSTRB = 0b01; RLAST = 0

RCHUNKNUM = 0; RCHUNKSTRB = 0b10; RLAST = 0

RCHUNKNUM = 1; RCHUNKSTRB = 0b10; RLAST = 0

RCHUNKNUM = 0; RCHUNKSTRB = 0b01; RLAST = 1

1st transfer

2nd transfer

3rd transfer

4th transfer

127 0

0x20

0x00

RDATA

255 128

0x10

0x30

Figure A6.1: Example of read data returned in 128-bit chunks

Figure A6.2 shows a transaction on a 256-bit width read data channel, where:

• Addr is 0x10.
• Length is 2 transfers.
• Size is 256 bits.
• Burst is INCR.

RCHUNKNUM = 0; RCHUNKSTRB = 0b10; RLAST = 0

RCHUNKNUM = 1; RCHUNKSTRB = 0b11; RLAST = 1

1st transfer

2nd transfer

127 0

0x20

RDATA

255 128

0x10

0x30

Figure A6.2: Example with an unaligned address and a mixture of 128-bit and 256-bit chunks

Figure A6.3 shows a transaction on a 128-bit width read data channel, where:

• Addr is 0x10.
• Length is 4 transfers.
• Size is 128 bits.
• Burst is WRAP.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

108

Chapter A6. Transaction identifiers and ordering
A6.6. Read data ordering

• RCHUNKSTRB is not present.

The Subordinate uses the start address as a hint and sends the chunk at 0x10 first.

RCHUNKNUM = 1; RLAST = 0

RCHUNKNUM = 3; RLAST = 0

RCHUNKNUM = 0; RLAST = 0

RCHUNKNUM = 2; RLAST = 1

1st transfer

2nd transfer

3rd transfer

4th transfer

127 0

0x10

0x30

0x00

0x20

RDATA

Figure A6.3: Example of a wrapping transaction

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

109

Chapter A7
Atomic accesses

This chapter describes single-copy and multi-copy atomicity and how to perform exclusive accesses and atomic
transactions.

It contains the following sections:

• A7.1 Single-copy atomicity size

• A7.2 Multi-copy write atomicity

• A7.3 Exclusive accesses

• A7.4 Atomic transactions

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

110

Chapter A7. Atomic accesses
A7.1. Single-copy atomicity size

A7.1 Single-copy atomicity size

The single-copy atomicity size is the minimum number of bytes that a transaction updates atomically. The AXI
protocol requires a transaction that is larger than the single-copy atomicity size to update memory in blocks of at
least the single-copy atomicity size.

Atomicity does not define the exact instant when the data is updated. What must be ensured is that no Manager can
ever observe a partially updated form of the atomic data. For example, in many systems, data structures such as
linked lists are made up of 32-bit atomic elements. An atomic update of one of these elements requires that the
entire 32-bit value is updated at the same time. It is not acceptable for any Manager to observe an update of only
16 bits at one time, and then the update of the other 16 bits later.

More complex systems require support for larger atomic elements, in particular 64-bit atomic elements, so that
Managers can communicate using data structures that are based on these larger atomic elements.

The single-copy atomicity sizes that are supported in a system are important because all the components involved
in a given communication must support the required size of atomic element. If two Managers are communicating
through an interconnect and a single Subordinate, then all the components involved must ensure that transactions
of the required size are treated atomically.

The AXI protocol does not require a specific single-copy atomicity size and systems can be designed to support
different single-copy atomicity sizes.

In AXI the term single-copy atomic group describes a group of components that can communicate at a particular
atomicity. For example, Figure A7.1 shows a system in which:

• The CPU, DSP, DRAM controller, DMA controller, peripherals, SRAM memory and associated interconnect,
are in a 32-bit single-copy atomic group.

• The CPU, DSP, DRAM controller, and associated interconnect are also in a 64-bit single-copy atomic group.

32-bit single-copy atomic group
64-bit single-copy atomic group

CPU

Interconnect

DSP
DMA

Controller

DRAM
Controller

SRAM

UART Timer GPIO

Interconnect

Figure A7.1: Example system with different single-copy atomic groups

A transaction never has an atomicity guarantee greater than the alignment of its start address. For example, a
transaction in a 64-bit single-copy atomic group that is not aligned to an 8-byte boundary does not have any 64-bit
single-copy atomic guarantee.

Byte strobes associated with a transaction do not affect the single-copy atomicity size.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

111

Chapter A7. Atomic accesses
A7.2. Multi-copy write atomicity

A7.2 Multi-copy write atomicity

A system is defined as being multi-copy atomic if:

• Writes to the same location are observed in the same order by all agents.

• A write to a location that is observable by an agent, is observable by all agents.

To specify that a system provides multi-copy atomicity, a Multi_Copy_Atomicity property is defined.

Table A7.1: Multi_Copy_Atomicity property

Multi_Copy_Atomicity Default Description

True Multi_Copy_Atomicity is supported.

False Y Multi_Copy_Atomicity is not supported.

Multi-copy atomicity can be ensured by:

• Using a single Point of Serialization (PoS) for a given address, so that all accesses to the same location are
ordered. This must ensure that all coherent cached copies of a location are invalidated before the new value
of the location is made visible to any agents.

• Avoiding the use of forwarding buffers that are upstream of any agents. This prevents a buffered write of a
location becoming visible to some agents before it is visible to all agents.

It is required that the Multi_Copy_Atomicity property is True for Issue G and later of this specification.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

112

Chapter A7. Atomic accesses
A7.3. Exclusive accesses

A7.3 Exclusive accesses

The exclusive access mechanism can provide semaphore-type operations without requiring the connection to
remain dedicated to a particular Manager during the operation.

The AxLOCK signals are used to indicate an exclusive access, and the BRESP and RRESP signals indicate the
success or failure of the exclusive access write or read respectively.

Table A7.2: AxLOCK signals

Name Width Default Description

AWLOCK,
ARLOCK

1 0b0 Asserted high to indicate that an exclusive access is
required.

The Exclusive_Accesses property is used to define whether a Manager issues exclusive accesses or whether a
Subordinate supports them:

Table A7.3: Exclusive_Accesses property

Exclusive_Accesses Default Description

True Y Exclusive accesses are supported. AWLOCK and
ARLOCK are present on the interface.

False Exclusive accesses are not supported. AWLOCK and
ARLOCK are not present on the interface.

Table A7.4 provides guidance that applies when connecting Manager and Subordinate components with different
property values:

Table A7.4: Exclusive Accesses Interoperability

Subordinate: False Subordinate: True

Manager: False Compatible. Compatible.
AWLOCK and ARLOCK are tied
LOW.

Manager: True Not compatible.
Exclusive accesses will continually fail,
but the interface will not deadlock.

Compatible.

A7.3.1 Exclusive access sequence

The mechanism of an exclusive access sequence is:

1. A Manager issues an exclusive read request from an address.

2. At some later time, the Manager attempts to complete the exclusive operation by issuing an exclusive write
request to the same address, with an AWID that matches the ARID used for the exclusive read.

3. This exclusive write access is signaled as either:

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

113

Chapter A7. Atomic accesses
A7.3. Exclusive accesses

• Successful, if no other Manager has written to that location since the exclusive read access. In this case,
the exclusive write updates memory.

• Failed, if another Manager has written to that location since the exclusive read access. In this case, the
memory location is not updated.

A Manager might not complete the write portion of an exclusive operation. The exclusive access monitoring
hardware monitors only one address for each transaction ID. If a Manager does not complete the write portion of
an exclusive operation, a subsequent exclusive read by that Manager using the same transaction ID changes the
address that is being monitored for exclusive accesses.

A7.3.2 Exclusive access from the perspective of the Manager

A Manager starts an exclusive operation by performing an exclusive read. If the transaction is successful, the
Subordinate returns the EXOKAY response, indicating that the Subordinate recorded the address to be monitored
for exclusive accesses.

If the Manager attempts an exclusive read from a Subordinate that does not support exclusive accesses, the
Subordinate returns the OKAY response instead of the EXOKAY response. In this case, the read data is valid, but
the location is not being monitored for exclusivity.

The Manager can treat the OKAY response as an error condition indicating that the exclusive access is not
supported. It is recommended that the Manager does not perform the write portion of this exclusive operation.

At some time after the exclusive read, the Manager tries an exclusive write to the same location. If the contents of
the addressed location have not been updated since the exclusive read, the exclusive write operation succeeds. The
Subordinate returns the EXOKAY response, and updates the memory location.

If the contents of the addressed location have been updated since the exclusive read, the exclusive write attempt
fails, and the Subordinate returns the OKAY response instead of the EXOKAY response. The exclusive write
attempt does not update the memory location.

A Manager might not complete the write portion of an exclusive operation. If this happens, the Subordinate
continues to monitor the address for exclusive accesses until another exclusive read starts a new exclusive access
sequence.

A Manager must not start the write part of an exclusive access sequence until the read part is complete.

A7.3.3 Exclusive access restrictions

The following restrictions apply to exclusive accesses:

• The address of an exclusive access must be aligned to the total number of bytes in the transaction, that is, the
product of Size and Length.

• The number of bytes to be transferred in an exclusive access transaction must be a power-of-2, that is, 1, 2, 4,
8, 16, 32, 64, or 128 bytes.

• The maximum number of bytes that can be transferred in an exclusive transaction is 128.

• The Length of an exclusive access must not exceed 16 transfers.

• The Domain must not be Shareable, see A9.3.3 Shareable Domain.

• The Opcode must be ReadNoSnoop or WriteNoSnoop. See Chapter A8 Request Opcodes.

• AWTAGOP must not be Match, see A13.2 Memory Tagging Extension (MTE).

Failure to observe these restrictions causes UNPREDICTABLE behavior.

For an exclusive sequence to be successful, the AxCACHE values must be appropriate to ensure that the read and
write requests reach the exclusive access monitor.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

114

Chapter A7. Atomic accesses
A7.3. Exclusive accesses

The minimum number of bytes to be monitored during an exclusive operation is the product of Size and Length.

The Subordinate can monitor a larger number of bytes, up to 128, which is the maximum number of bytes in an
exclusive access. However, this can result in a successful exclusive access being indicated as failing because a
neighboring byte was updated.

If any of the signals shown in Table A7.5 are different between the read and write requests in an exclusive
sequence, the exclusive write might fail even if the location has not been updated by another agent.

Table A7.5: Signals that should be the same in an exclusive sequence

AxID AxADDR AxREGION AxSUBSYSID AxDOMAIN

AxLEN AxSIZE AxBURST AxLOCK AxCACHE[1:0]

AxPROT AxNSE AxSNOOP AxMMUATST AxMMUFLOW

AxMMUVALID AxMMUSECSID AxMMUSID AxMMUSSID AxMMUSSIDV

A7.3.4 Exclusive access from the perspective of the Subordinate

A Subordinate that supports exclusive access must have monitor hardware. It is recommended that such a
Subordinate has a monitor unit for each exclusive-capable Manager ID that can access it.

When a Subordinate receives an exclusive read request, it records the address and ARID value of any exclusive
read operation. Then it monitors that location until either a write occurs to that location or until another exclusive
read with the same ARID value resets the monitor to a different address.

If the Subordinate can successfully process the exclusive read, it responds with EXOKAY for every read data
transfer.

If the Subordinate cannot process the exclusive read, it responds with a response which is not EXOKAY. An
exclusive read can have more than one response transfers. It is not permitted to have a mix of OKAY and
EXOKAY responses for a single transaction.

When the Subordinate receives an exclusive write with a given AWID value, the monitor checks to see if that
address is being monitored for exclusive access with that AWID. If it is, then this indicates that no write has
occurred to that location since the exclusive read access, and the exclusive write proceeds, completing the
exclusive access. The Subordinate returns the EXOKAY response to the Manager and updates the addressed
memory location.

If the address is not being monitored with the same AWID value at the time of an exclusive write, this indicates
one of the following:

• The location has been updated since the exclusive read access.

• The monitor has been reset to another location.

• The Manager did not issue an exclusive read with the same attributes as the exclusive write.

In all cases the exclusive write must not update the addressed location, and the Subordinate must return the OKAY
response instead of the EXOKAY response.

If a Subordinate that does not support exclusive accesses receives an exclusive write, it responds with an OKAY
response and the location is updated.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

115

Chapter A7. Atomic accesses
A7.4. Atomic transactions

A7.4 Atomic transactions

Atomic transactions perform more than just a single access and have an operation that is associated with the
transaction. Atomic transactions enable sending the operation to the data, permitting the operation to be performed
closer to where the data is located. Atomic transactions are suited to situations where the data is located a
significant distance from the agent that must perform the operation.

Compared with using exclusive accesses, this approach reduces the amount of time during which the data must be
made inaccessible to other agents in the system.

A7.4.1 Overview

In an atomic transaction, the Manager sends an address, control information, and outbound data. The Subordinate
sends inbound data (except for AtomicStore) and a response. This specification supports four forms of Atomic
transaction:

AtomicStore

• The Manager sends a single data value with an address and the atomic operation to be performed.

• The Subordinate performs the operation using the sent data and value at the addressed location as operands.

• The result is stored in the address location.

• A single response is given without data.

• Outbound data size is 1, 2, 4, or 8 bytes.

AtomicLoad

• The Manager sends a single data value with an address and the atomic operation to be performed.

• The Subordinate returns the original data value at the addressed location.

• The Subordinate performs the operation using the sent data and value at the addressed location as operands.

• The result is stored in the address location.

• Outbound data size is 1, 2, 4, or 8 bytes.

• Inbound data size is the same as the outbound data size.

AtomicSwap

• The Manager sends a single data value with an address.

• The Subordinate swaps the value at the addressed location with the data value that is supplied in the
transaction.

• The Subordinate returns the original data value at the addressed location.

• Outbound data size is 1, 2, 4, or 8 bytes.

• Inbound data size is the same as the outbound data size.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

116

Chapter A7. Atomic accesses
A7.4. Atomic transactions

AtomicCompare

• The Manager sends two data values, the compare value and the swap value, to the addressed location. The
compare and swap values are of equal size.

• The Subordinate checks the data value at the addressed location against the compare value:

– If the values match, the swap value is written to the addressed location.

– If the values do not match, the swap value is not written to the addressed location.

• The Subordinate returns the original data value at the addressed location.

• Outbound data size is 2, 4, 8, 16, or 32 bytes.

• Inbound data size is half of the outbound data size because the outbound data contains both compare and
swap values, whereas the inbound data has only the original data value.

A7.4.2 Atomic transaction operations

This specification supports eight different operations that can be used with AtomicStore and AtomicLoad
transactions as shown in Table A7.6.

Table A7.6: Atomic transaction operators

Operator Description

ADD The value in memory is added to the sent data and the result stored in memory.

CLR Every set bit in the sent data clears the corresponding bit of the data in memory.

EOR Bitwise exclusive OR of the sent data and value in memory.

SET Every set bit in the sent data sets the corresponding bit of the data in memory.

SMAX The value stored in memory is the maximum of the existing value and sent data.
This operation assumes signed data.

SMIN The value stored in memory is the minimum of the existing value and sent data.
This operation assumes signed data.

UMAX The value stored in memory is the maximum of the existing value and sent data.
This operation assumes unsigned data.

UMIN The value stored in memory is the minimum of the existing value and sent data.
This operation assumes unsigned data.

A7.4.3 Atomic transactions attributes

The rules for atomic transactions are as follows:

• AWLEN and AWSIZE specify the number of bytes of write data in the transaction. For AtomicCompare,
the number of bytes must include both the compare and swap values.

• If AWLEN indicates a transaction length greater than one, AWSIZE is required to be the full data channel
width.

• Write strobes that are not within the data window, as specified by AWADDR and AWSIZE, must be
deasserted.

• Write strobes within the data window must be asserted.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

117

Chapter A7. Atomic accesses
A7.4. Atomic transactions

For AtomicStore, AtomicLoad, and AtomicSwap

• The write data is 1, 2, 4, or 8 bytes and read data is 1, 2, 4, or 8 bytes respectively.

• AWADDR must be aligned to the total write data size.

• AWBURST must be INCR.

For AtomicCompare

• The write data is 2, 4, 8, 16, or 32 bytes and read data is 1, 2, 4, 8, or 16 bytes.

• AWADDR must be aligned to half the total write data size.

• If AWADDR points to the lower half of the transaction:

– The compare value is sent first. The compare value is in the lower bytes of a single-transfer transaction,
or in the first transfers of a multi-transfer transaction.

– AWBURST must be INCR.

• If AWADDR points to the upper half of the transaction:

– The swap value is sent first. The swap value is in the lower bytes of a single-transfer transaction, or in
the first transfers of a multi-transfer transaction.

– AWBURST must be WRAP.

• There are relaxations to the usual rules for transactions of type WRAP:

– A Length of 1 is permitted.

– AWADDR is not required to be aligned to the transfer size.

Examples of AtomicCompare transactions with a 64-bit data channel are shown in Figure A7.2.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

118

Chapter A7. Atomic accesses
A7.4. Atomic transactions

01234567

CS------

AWADDR AWSIZE AWLEN

0x00

0x01

0x04

0x06

0x00

0x04

0x00

0x08

0

0

0

0

0

0

1

1

1st Transfer

2nd Transfer

1st Transfer

2nd Transfer

1 (2B)

1 (2B)

2 (4B)

2 (4B)

3 (8B)

3 (8B)

3 (8B)

3 (8B)

SC------

----CCSS

----SSCC

C CCCSSSS

S SSSCCCC

C CCCCCCC

S SSSSSSS

S SSSSSSS

C CCCCCCC

AWBURST

INCR

WRAP

INCR

WRAP

INCR

WRAP

INCR

WRAP

Figure A7.2: Examples showing the location of the Compare and Swap values for an AtomicCompare

A7.4.4 ID use for Atomic transactions

A single AXI ID is used for an Atomic transaction. The same AXI ID is used for the request, write response, and
the read data. This requirement means that the Manager must only use ID values that can be signaled on both
AWID and RID signals.

Atomic transactions must not use AXI ID values that are used by Non-atomic transactions that are outstanding at
the same time. This rule applies to transactions on either the AR or AW channel. This rule ensures that there are
no ordering constraints between Atomic transactions and Non-atomic transactions.

If one transaction has fully completed before the other is issued, Atomic transactions and Non-atomic transactions
can use the same AXI ID value.

Multiple Atomic transactions that are outstanding at the same time must not use the same AXI ID value.

For Atomic transactions that use the read data channel, if the interface includes Unique ID signaling then
RIDUNQ must be asserted if AWIDUNQ was asserted. See A6.2 Unique ID indicator for more details.

A7.4.5 Request attribute restrictions for Atomic transactions

For Atomic transactions, the following restrictions apply for request attributes:

• AWCACHE and AWDOMAIN are permitted to be any combination valid for the interface type. See Table
A9.7.

• AWSNOOP must be set to all zeros. If AWSNOOP has any other value, AWATOP must be all zeros.

• AWLOCK must be deasserted, not exclusive access.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

119

Chapter A7. Atomic accesses
A7.4. Atomic transactions

A7.4.6 Atomic transaction signaling

To support Atomic transactions AWATOP is added to an interface.

Table A7.7: ID signals

Name Width Default Description

AWATOP 6 0x00 Indicates the type and endianness of an
atomic transaction.

The encodings for AWATOP are shown in Table A7.8 and Table A7.9.

Table A7.8: AWATOP encodings

AWATOP[5:0] Description

0b000000 Non-atomic operation

0b01exxx AtomicStore

0b10exxx AtomicLoad

0b110000 AtomicSwap

0b110001 AtomicCompare

For AtomicStore and AtomicLoad transactions AWATOP[3] indicates the endianness that is required for the
atomic operation:

• When deasserted, this bit indicates that the operation is little-endian.

• When asserted, this bit indicates that the operation is big-endian.

The value of AWATOP[3] applies to arithmetic operations only and is ignored for bitwise logical operations.

For AtomicStore and AtomicLoad transactions, Table A7.9 shows the encodings for the operations on the
lower-order AWATOP[2:0] signals.

Table A7.9: Lower order AWATOP[2:0] encodings

AWATOP[2:0] Operation Description

0b000 ADD Add

0b001 CLR Bit clear

0b010 EOR Exclusive OR

0b011 SET Bit set

0b100 SMAX Signed maximum

0b101 SMIN Signed minimum

0b110 UMAX Unsigned maximum

0b111 UMIN Unsigned minimum

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

120

Chapter A7. Atomic accesses
A7.4. Atomic transactions

A7.4.7 Transaction structure

For AtomicLoad, AtomicSwap, and AtomicCompare transactions, the transaction structure is as follows:

• The request is issued on the AW channel.

• The associated transaction data is sent on the W channel.

• The number of write data transfers required on the W channel is determined by the AWLEN signal.

• The relative timing of the Atomic transaction request and the Atomic transaction write data is not specified.

• The Subordinate returns the original data value using the R channel.

• The number of read data transfers is determined from both AWLEN and the AWATOP signals. For the
AtomicCompare operation, if AWLEN indicates a transaction length greater than 1, then the number of read
data transfers is half that specified by AWLEN.

• A Subordinate is permitted to wait for all write data before sending read data. A Manager must be able to
send all write data without receiving any read data.

• A Subordinate is permitted to send all read data before accepting any write data. A Manager must be able to
accept all read data without any write data being accepted.

• A single write response is returned on the B channel. The write response must be given by the Subordinate
only after it has received all write data transfers and the result of the atomic transaction is observable.

The transfers involved in AtomicLoad, AtomicSwap, and AtomicCompare transactions are shown in Figure A7.3.

sent data

Subordinate

AW

W

B

R

Manager

AtomicLoad

sent data

response

sent dataoriginal data

Figure A7.3: AtomicLoad, AtomicSwap, or AtomicCompare transaction

For AtomicStore transactions, the transaction structure is as follows:

• The request is issued on the AW channel.

• The associated transaction data is sent on the W channel.

• The number of write data transfers required on the W channel is determined by the AWLEN signal.

• The relative timing of the Atomic transaction request and the Atomic transaction write data is not specified.

• A single write response is returned on the B channel. The write response must be given only by the
Subordinate after it has received all write data transfers and the result of the atomic transaction is observable.

The transfers involved in AtomicStore transactions are shown in Figure A7.4.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

121

Chapter A7. Atomic accesses
A7.4. Atomic transactions

sent data

Subordinate

AW

W

B

Manager

AtomicStore

sent data

response

Figure A7.4: AtomicStore transaction

A7.4.8 Response signaling

The write response to an Atomic transaction indicates that the transaction is visible to all required observers.

Atomic transactions that include a read response are visible to all required observers from the point of receiving
the first item of read data.

A Manager is permitted to use either read or write response as indication that a transaction is visible to all required
observers.

There is no concept of an error that is associated with the operation, such as overflow. An operation is fully
specified for all input combinations.

For transactions, such as AtomicCompare, where there are multiple outcomes for the transaction, no indication is
provided on the outcome of the transaction. To determine if a Compare and Swap instruction has updated the
memory location, it is necessary to inspect the original data value that is returned as part of the transaction.

It is permitted to give an error response to an Atomic transaction when the transaction reaches a component that
does not support Atomic transactions.

For AtomicLoad, AtomicSwap and AtomicCompare transactions:

• A Subordinate must send the correct number of read data transfers, even if the write response is DECERR or
SLVERR.

• A Manager might ignore the write response and only use the response that comes with read data.

A7.4.9 Atomic transaction dependencies

For AtomicLoad, AtomicSwap, and AtomicCompare transactions, Figure A7.5 shows the following Atomic
transaction handshake signal dependencies:

• The Manager must not wait for the Subordinate to assert AWREADY or WREADY before asserting
AWVALID or WVALID.

• The Subordinate can wait for AWVALID or WVALID, or both, before asserting AWREADY.

• The Subordinate can assert AWREADY before AWVALID or WVALID, or both, are asserted.

• The Subordinate can wait for AWVALID or WVALID, or both, before asserting WREADY.

• The Subordinate can assert WREADY before AWVALID or WVALID, or both, are asserted.

• The Subordinate must wait for AWVALID, AWREADY, WVALID, and WREADY to be asserted before
asserting BVALID.

• The Subordinate must also wait for WLAST to be asserted before asserting BVALID because the write
response BRESP, must be signaled only after the last data transfer of a write transaction.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

122

Chapter A7. Atomic accesses
A7.4. Atomic transactions

• The Subordinate must not wait for the Manager to assert BREADY before asserting BVALID.

• The Manager can wait for BVALID before asserting BREADY.

• The Manager can assert BREADY before BVALID is asserted.

• The Subordinate must wait for both AWVALID and AWREADY to be asserted before it asserts RVALID to
indicate that valid data is available.

• The Subordinate must not wait for the Manager to assert RREADY before asserting RVALID.

• The Manager can wait for RVALID to be asserted before it asserts RREADY.

• The Manager can assert RREADY before RVALID is asserted.

• The Manager must not wait for the Subordinate to assert RVALID before asserting WVALID.

• The Subordinate can wait for WVALID to be asserted, for all write data transfers, before it asserts RVALID.

• The Manager can assert WVALID before RVALID is asserted.

In the dependency diagram that Figure A7.5 shows:

• A single-headed arrow points to a signal that can be asserted before or after the signal at the start of the arrow.

• A double-headed arrow points to a signal that must be asserted only after assertion of the signal at the start of
the arrow.

AWREADY

AWVALID WVALID BVALID

BREADYWREADY

RVALID

RREADY

Figure A7.5: Atomic transaction handshake dependencies

A7.4.10 Support for Atomic transactions

The Atomic_Transactions property is used to indicate whether a component supports Atomic transactions.

Table A7.10: Atomic_Transactions property

Atomic_Transactions Default Description

True Atomic Transactions are supported.

False Y Atomic Transactions are not supported.

In some implementations this will be a fixed interface attribute, other implementations might enable the
design-time setting of the property.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

123

Chapter A7. Atomic accesses
A7.4. Atomic transactions

If a Subordinate or interconnect component declares that it supports Atomic transactions, then it must support all
operation types, sizes, and endianness.

Manager support

A Manager component that supports Atomic transactions can also include a mechanism to suppress the generation
of Atomic transactions to ensure compatibility in systems where Atomic transactions are not supported.

An optional BROADCASTATOMIC pin is specified. When present and deasserted, Atomic transactions are not
issued by the Manager.

Table A7.11: BROADCASTATOMIC tie-off input

Name Width Default Description

BROADCASTATOMIC 1 0b1 Manager tie-off input, used to control the issuing of
Atomic transactions from an interface.

Subordinate support

It is optional for a Subordinate component to support Atomic transactions.

If a Subordinate component only supports Atomic transactions for particular memory types, or for particular
address regions, then the Subordinate must give an appropriate error response for the Atomic transactions that it
does not support.

Interconnect support

It is optional for an interconnect to support Atomic transactions.

If an interconnect does not support Atomic transactions, all attached Manager components must be configured to
not generate Atomic transactions.

Atomic transactions, can be supported at any point within an interconnect that supports them, including passing
Atomic transactions downstream to Subordinate components.

Atomic transactions are not required to be supported for every address location. If Atomic transactions are not
supported for a given address location, then an appropriate error response can be given for the transaction.
See A4.3 Transaction response.

For Device transactions, the Atomic transaction must be passed to the endpoint Subordinate. If the Subordinate is
configured to indicate that it does not support Atomic transactions, then the interconnect must give an error
response for the transaction. An Atomic transaction must not be passed to a component that does not support
Atomic transactions.

For Cacheable transactions, the interconnect can either:

• Perform the atomic operation within the interconnect. This method requires that the interconnect performs
the appropriate read, write, and snoop transactions to complete the operation.

• If the appropriate endpoint Subordinate is configured to indicate that it does support atomic operations, then
the interconnect can pass the atomic operation to the Subordinate.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

124

Chapter A8
Request Opcodes

The request Opcode indicates the function of a request and how it must be processed by a Subordinate.

This chapter summarizes all Opcodes that are available with links in the tables to detailed descriptions of how they
work.

It contains the following sections:

• A8.1 Opcode signaling

• A8.2 AWSNOOP encodings

• A8.3 ARSNOOP encodings

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

125

Chapter A8. Request Opcodes
A8.1. Opcode signaling

A8.1 Opcode signaling

The request Opcode is communicated using the AWSNOOP and ARSNOOP signals.

Table A8.1: AxSNOOP signals

Name Width Default Description

AWSNOOP AWSNOOP_WIDTH 0x00
(WriteNoSnoop /
WriteUniquePtl /
Atomic)

Opcode for requests using the write channels.

ARSNOOP ARSNOOP_WIDTH 0x0 (ReadNoSnoop
/ ReadOnce)

Opcode for requests using the read channels.

WriteNoSnoop, WriteUniquePtl, ReadNoSnoop and ReadOnce are default Opcodes and are used for generic
requests.

The AxSNOOP width properties are defined in Table A8.2.

Table A8.2: AxSNOOP width properties

Name Values Default Description

AWSNOOP_WIDTH 0, 4, 5 4 Width of AWSNOOP in bits.

ARSNOOP_WIDTH 0, 4 4 Width of ARSNOOP in bits.

If any of the following properties are not False, AWSNOOP_WIDTH must be 5:

• WriteDeferrable_Transaction

• UnstashTranslation_Transaction

• InvalidateHint_Transaction

If any of the following properties are not False, AWSNOOP_WIDTH must be 4 or 5:

• Shareable_Cache_Support

• WriteNoSnoopFull_Transaction

• CMO_On_Write

• WriteZero_Transaction

• Cache_Stash_Transactions

• Untranslated_Transactions

• Prefetch_Transaction

If any of the following properties are not False, ARSNOOP_WIDTH must be 4:

• Shareable_Cache_Support

• DeAllocation_Transactions

• CMO_On_Read

• DVM_Message_Support

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

126

Chapter A8. Request Opcodes
A8.1. Opcode signaling

Any AxSNOOP bits not driven by an interface are assumed to be LOW.

A Manager that only issues WriteNoSnoop/WriteUniquePtl/Atomic requests can set AWSNOOP_WIDTH to 0
which omits the AWSNOOP output from its interface. An attached Subordinate must have its AWSNOOP input
tied LOW.

A Manager that only issues ReadNoSnoop/ReadOnce requests can set ARSNOOP_WIDTH to 0 which omits the
ARSNOOP output from its interface. An attached Subordinate must have its ARSNOOP input tied LOW.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

127

Chapter A8. Request Opcodes
A8.2. AWSNOOP encodings

A8.2 AWSNOOP encodings

The encodings for AWSNOOP are shown in Table A8.3. Some Opcodes depend on the Domain of the request.
The Enable column lists the property expression that determines whether a Manager interface is permitted to use
the Opcode and a Subordinate interface supports it.

Unlisted combinations of AWSNOOP and AWDOMAIN are illegal.

Table A8.3: AWSNOOP encodings

AWSNOOP AWDOMAIN1 Opcode Enable Description

0b00000

NSH, SYS WriteNoSnoop - Write to a Non-shareable or
System location.

SH WriteUniquePtl Shareable_Transactions Write to a Shareable location.

NSH, SH, SYS Atomic Atomic_Transactions Atomic transaction, indicated by
nonzero AWATOP signal.

0b00001
NSH WriteNoSnoopFull WriteNoSnoopFull_Transaction

or Shareable_Cache_Support
Cache line sized and Regular write
to a Non-shareable location.

SH WriteUniqueFull Shareable_Transactions Cache line sized and Regular write
to a Shareable location.

0b00010 - RESERVED -

0b00011 SH WriteBackFull Shareable_Transactions and
Shareable_Cache_Support

Cache line sized and Regular write
to a Shareable location. The line
was held in a coherent cache and
is Dirty.

0b00100 - RESERVED -

0b00101 SH WriteEvictFull Shareable_Transactions and
Shareable_Cache_Support

Cache line sized and Regular write
to a Shareable location. The line
was held in a coherent cache and
is Clean.

0b00110 NSH, SH CMO CMO_On_Write A data-less request which
indicates that a cache maintenance
operation must be performed. The
specific operation is encoded on
the AWCMO signal. Cache line
sized and Regular.

0b00111 NSH, SH, SYS WriteZero WriteZero_Transaction Cache line sized and Regular
write, where the value of every
byte is zero.

0b01000 SH WriteUniquePtlStash Shareable_Transactions and
Cache_Stash_Transactions

Write to a Shareable location with
an indication that the data should
be allocated into a cache. Cache
line sized or smaller.

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

128

Chapter A8. Request Opcodes
A8.2. AWSNOOP encodings

Table A8.3 – Continued from previous page

AWSNOOP AWDOMAIN1 Opcode Enable Description

0b01001 SH WriteUniqueFullStash Shareable_Transactions and
Cache_Stash_Transactions

Cache line sized and Regular write
to a Shareable location with an
indication that the data should be
allocated into a cache.

0b01010 NSH, SH WritePtlCMO Write_Plus_CMO Write where any cached copies of
the line must be cleaned and/or
invalidated according to the
AWCMO signal. Cache line sized
or smaller.

0b01011 NSH, SH WriteFullCMO Write_Plus_CMO Cache line sized and Regular write
where any cached copies of the
line must be cleaned and/or
invalidated according to the
AWCMO signal.

0b01100 NSH, SH StashOnceShared Cache_Stash_Transactions A data-less request which
indicates that a cache line should
be fetched into a cache. Other
copies of the line are not required
to be invalidated. Cache line sized
and Regular.

0b01101 NSH, SH StashOnceUnique Cache_Stash_Transactions A data-less request which
indicates that a cache line should
be fetched into a cache. It is
recommended that all other copies
are invalidated. Cache line sized
and Regular.

0b01110 NSH, SH, SYS StashTranslation Untranslated_Transactions and
Cache_Stash_Transactions

A data-less request which
indicates that a translation should
be cached in an MMU.

0b01111 NSH, SH Prefetch Prefetch_Transaction A data-less request which
indicates that a Manager might
read the addressed cache line at a
later time. Cache line sized and
Regular.

0b10000 SYS WriteDeferrable WriteDeferrable_Transaction A 64-byte atomic write where the
Subordinate can give a DEFER or
UNSUPPORTED response.

0b10001 NSH, SH, SYS UnstashTranslation UnstashTranslation_Transaction A data-less request which is a hint
that a translation is not likely to be
used again.

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

129

Chapter A8. Request Opcodes
A8.2. AWSNOOP encodings

Table A8.3 – Continued from previous page

AWSNOOP AWDOMAIN1 Opcode Enable Description

0b10010 NSH, SH InvalidateHint InvalidateHint_Transaction A data-less request which
indicates that a cache line is no
longer required and can be
invalidated. A write-back is
permitted but not required. Cache
line sized and Regular.

0b10011 to
0b11111

- RESERVED - -

1 NSH is Non-shareable (0b00), SH is Shareable (0b01 or 0b10), SYS is System (0b11).

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

130

Chapter A8. Request Opcodes
A8.3. ARSNOOP encodings

A8.3 ARSNOOP encodings

The encodings for ARSNOOP are shown in Table A8.4. Some Opcodes depend on the Domain of the request.
The Enable column lists the property expression that determines whether a Manager interface is permitted to use
the Opcode and a Subordinate interface supports it.

Unlisted combinations of ARSNOOP and ARDOMAIN are illegal.

Table A8.4: ARSNOOP encodings

ARSNOOP ARDOMAIN1 Opcode Enable Description

0b0000
NSH, SYS ReadNoSnoop - Read from a Non-shareable or

System location.

SH ReadOnce Shareable_Transactions Read from a Shareable location
which the Manager will not
cache.

0b0001 SH ReadShared Shareable_Transactions and
Shareable_Cache_Support

Cache line sized and Regular
read from a Shareable location
which the Manager might cache.
Data can be Dirty.

0b0010 SH ReadClean Shareable_Transactions and
Shareable_Cache_Support

Cache line sized and Regular
read from Shareable location
which the Manager might cache.
Data must not be Dirty.

0b0011 - RESERVED - -

0b0100 SH ReadOnceCleanInvalid Shareable_Transactions and
DeAllocation_Transactions

Read from a Shareable location
which the Manager will not
cache. Cached copies are
recommended to be cleaned and
invalidated. Cache line sized or
smaller.

0b0101 SH ReadOnceMakeInvalid Shareable_Transactions and
DeAllocation_Transactions

Read from a Shareable location
which the Manager will not
cache. Cached copies are
recommended to be invalidated
without a write-back. Cache line
sized or smaller.

0b0110 - RESERVED - -

0b0111 - RESERVED - -

0b1000 NSH, SH CleanShared CMO_On_Read A request to clean all copies of a
cache line. Cache line sized and
Regular.

0b1001 NSH, SH CleanInvalid CMO_On_Read A request to clean and invalidate
all copies of a cache line. Cache
line sized and Regular.

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

131

Chapter A8. Request Opcodes
A8.3. ARSNOOP encodings

Table A8.4 – Continued from previous page

ARSNOOP ARDOMAIN1 Opcode Enable Description

0b1010 NSH, SH CleanSharedPersist CMO_On_Read and
Persist_CMO

A request to clean all copies of a
cache line. Cleaned data must
pass the Point of Persistence or
Point of Deep Persistence.
Cache line sized and Regular.

0b1011 - RESERVED - -

0b1100 - RESERVED - -

0b1101 NSH, SH MakeInvalid CMO_On_Read A request to clean and invalidate
all copies of a cache line. Dirty
data is not required to be written
to memory. Cache line sized
and Regular.

0b1110 SH DVM Complete DVM_Message_Support Indicates completion of a DVM
synchronization message.

0b1111 - RESERVED - -

1 NSH is Non-shareable (0b00), SH is Shareable (0b01 or 0b10), SYS is System (0b11).

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

132

Chapter A9
Caches

This chapter describes caching in the AXI protocol.

It contains the following sections:

• A9.1 Caching in AXI

• A9.2 Cache line size

• A9.3 Cache coherency and Domains

• A9.4 I/O coherency

• A9.5 Caching Shareable lines

• A9.6 Prefetch transaction

• A9.7 Cache Stashing

• A9.8 Deallocating read transactions

• A9.9 Invalidate hint

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

133

Chapter A9. Caches
A9.1. Caching in AXI

A9.1 Caching in AXI

In this specification, the term cache is used for any storage structure, including caches, buffers, or other
intermediate storage elements. Data can be cached at various points in a system. An example topology is shown
in Figure A9.1. In the example, there is a system cache which is visible to all agents, local Shareable caches which
are visible to all coherent agents and local Non-shareable caches which are visible to a single agent.

Fully coherent agents use hardware coherency with data snooping to keep their caches coherent. These will
typically use an AMBA CHI interface [5].

I/O coherent agents can share data with fully coherent agents but any data that is cached locally to them must be
manually maintained to ensure coherency.

Non-coherent agents must use manual cache maintenance on any data that is shared with other agents and cached
locally.

Fully coherent agent Fully coherent agent I/O coherent agent

Shareable cache Shareable cache
Non-shareable

cache

Coherent interconnect and cache

Non-coherent interconnect

System cache

Memory

CHI

Non-coherent agent

CHI

CHI CHI

AXI

AXI

AXI

AXI

AXI

AXI

Figure A9.1: Example system topology showing possible cache locations and type

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

134

Chapter A9. Caches
A9.2. Cache line size

A9.2 Cache line size

A cache line is defined as a cached copy of sequentially byte addressed memory locations, with the first address
aligned to the total size of the cache line. A system which employs cache sharing must have a common cache line
size. Some transactions only operate on entire cache lines and must be cache line sized.

The cache line size is fixed at design time and defined using the Cache_Line_Size property.

Name Values Default Description

Cache_Line_Size 16, 32, 64, 128, 256, 512, 1024, 2048 64 Cache line size in bytes.

For any interfaces carrying cache line sized transactions, the data width must be wide enough to transport a cache
line using 16 transfers or fewer.

To be compatible with AMBA CHI, cache line size must be 64 bytes.

Opcodes where the transaction must be cache line sized and Regular are shown in Table A9.2. For more
information on Regular transactions, see A4.1.8 Regular transactions.

Table A9.2: Opcodes which must be cache line sized and Regular

Transactions on the read channels Transactions on the write channels

ReadShared WriteNoSnoopFull

ReadClean WriteUniqueFull

CleanShared WriteBackFull

CleanInvalid WriteEvictFull

MakeInvalid CMO

CleanSharedPersist WriteZero

WriteUniqueFullStash

WriteFullCMO

StashOnceShared

StashOnceUnique

Prefetch

InvalidateHint

Cache line sized, Regular transactions have the following constraints:

• Size x Length must be equal to the cache line size.

• Length can be 1, 2, 4, 8 or 16.

• If Length is greater than 1, Size must be equal to the data channel width.

• Burst must not be FIXED.

• If Burst is INCR, Address must be aligned to the cache line size.

• If Burst is WRAP, Address must be aligned to Size.

• The request must be Modifiable, that is AxCACHE[1] is asserted.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

135

Chapter A9. Caches
A9.2. Cache line size

• The request must not be an exclusive access, that is AxLOCK is deasserted.

• Transactions with write data must have all byte strobes asserted within the cache line container.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

136

Chapter A9. Caches
A9.3. Cache coherency and Domains

A9.3 Cache coherency and Domains

When multiple Managers share data, writes from those Managers must be coherent. This means writes to the same
address location by two Managers are observable in the same order by all participating Managers.

If a system contains caches, measures must be taken to ensure that cached values do not become stale.

In AMBA, this can be achieved in three ways:

• Using Non-cacheable transactions.

• Software coherency with manual cache maintenance.

• Hardware coherency with snooping and automatic cache maintenance.

AXI supports these by attributing a Domain to every address location, this can be System, Non-shareable or
Shareable. There must be a consistent definition of:

• Which address locations are in each Domain.

• Which Domain an address location is attributed.

A9.3.1 System Domain

Address locations in the System Domain must be visible to all Managers that are able to access them. This is
achieved by ensuring that all System Domain requests are Non-cacheable and therefore not stored in any local
caches. Using the System Domain makes coherency simple but is generally not high performance.

Requests to Device type memory are required to use the System Domain.

A9.3.2 Non-shareable Domain

Address locations in the Non-shareable Domain are not required to be visible to other Managers. Transactions to
Non-shareable locations do not need to trigger hardware coherency mechanisms to ensure visibility.

If Non-shareable data is to be shared between Managers, then transactions known as Cache Maintenance
Operations (CMOs) must be issued to clean and invalidate the data from any local caches before it is read.
See Chapter A10 Cache maintenance for more details.

Data sharing using CMOs is known as software coherency and can be an efficient approach if the sharing behavior
between Managers is known. For example, if there are predictable data sets that are written by one agent then read
by another. The main disadvantage of this approach is that it relies on software being correct. Coherency bugs in
software can be easy to introduce and difficult to debug.

To avoid a loss of coherency, there are some rules when caching Non-shareable lines:

• The eviction and write-back of Clean Non-shareable data is not permitted. This is to avoid a Clean line from
overwriting a Dirty line in a downstream cache that was written by another Manager.

• The passing of Dirty data on a read of a Non-shareable line from one cache to another is not permitted. The
line must be passed as Clean and responsibility for writing back the line remains with the downstream cache.
This avoids a subsequent write-back of the line from overwriting a later update from another Manager.

A9.3.3 Shareable Domain

Address locations in the Shareable Domain must be visible to all other Managers that also have those locations
marked as Shareable. Requests with the Shareable attribute must snoop local caches and lookup in caches that
might contain Shareable data from other Managers.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

137

Chapter A9. Caches
A9.3. Cache coherency and Domains

There are two reasons why an AXI component may need to support the Shareable Domain: to enable I/O
coherency and to support the movement of Shareable cache lines between upstream and downstream caches.
These cases are covered in A9.4 I/O coherency and A9.5 Caching Shareable lines.

Requests in the Shareable domain can use a Burst type of INCR or WRAP, not FIXED.

A9.3.4 Domain signaling

Domain signaling is optional, if an interface does not have Domain signaling then Non-cacheable requests are
assumed to be in the System Domain and Cacheable requests are assumed to be in the Non-shareable Domain.

If a component is required to support the Shareable Domain, it must include the Domain signaling.

The Shareable_Transactions property is used to describe whether an interface supports the Shareable Domain and
therefore has Domain signaling.

Table A9.3: Shareable_Transactions property

Shareable_Transactions Default Description

True Shareable domain supported, AxDOMAIN
signals are on the interface.

False Y Shareable domain not supported,
AxDOMAIN signals are not on the
interface.

When Shareable_Transactions is True, the following signals are included on the interface.

Table A9.4: AxDOMAIN signals

Name Width Default Description

AWDOMAIN,
ARDOMAIN

2 0b00 for Cacheable requests
0b11 for Non-cacheable requests

Shareability domain of a request.

Shareable_Transactions is encoded on the AxDOMAIN signals as shown in Table A9.5.

Table A9.5: AxDOMAIN encodings

AxDOMAIN Label Meaning

0b00 Non-shareable Non-shareable domain

0b01 Shareable Shareable domain

0b10 Shareable Shareable domain

0b11 System System domain

In previous versions of this specification, AxDOMAIN values of 0b01 and 0b10 indicated Inner Shareable and
Outer Shareable respectively. In this version, it is recommended that 0b10 is used to indicate the Shareable
domain.

Guidance for connecting Manager and Subordinate interfaces with different values of Shareable_Transactions is
shown in Table A9.6.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

138

Chapter A9. Caches
A9.3. Cache coherency and Domains

Table A9.6: Shareable_Transactions interoperability

Subordinate: False Subordinate: True

Manager: False Compatible. Compatible if logic is added to generate default
AxDOMAIN values from AxCACHE.

Manager: True Compatible.
AxDOMAIN outputs are unconnected.

Compatible.

A9.3.5 Domain consistency

An address location can be marked as Shareable for one agent and Non-shareable for another. To avoid a loss of
coherency, data cached as Non-shareable must be made visible using CMOs before being accessed by an agent
that has the location marked as Shareable.

A9.3.6 Domains and memory types

The combination of Domain and memory type determines which caches must be accessed to complete the
transactions.

Legal combinations of memory type and Domain are shown in Table A9.7. The table also indicates which caches
must be accessed when processing a request.

• Peer caches are those which are accessed using snoop requests, this requires a coherent protocol such as
AMBA CHI [5].

• Inline caches are those which requests pass through while progressing towards memory.

Table A9.7: Legal combinations of memory type and Domain

Memory type Domain Caches accessed

Device
(AxCACHE[3:1] == 0b000)

System None

Normal Non-cacheable
(AxCACHE[3:1] == 0b001)

Non-shareable None

Shareable Peer caches

System (recommended) None

Normal Cacheable
(AxCACHE[3:2] != 0b00)

Non-shareable Inline caches

Shareable Inline and peer caches

Note that Normal Non-cacheable Shareable is permitted but not expected. Some implementations might not look
up in peer caches for Non-cacheable accesses.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

139

Chapter A9. Caches
A9.4. I/O coherency

A9.4 I/O coherency

An I/O coherent Manager can read and write data in the Sharable Domain through use of a coherent interconnect
but it cannot be snooped, so it must not cache Shareable data. AXI does not support data snooping, so the coherent
interconnect will typically be based on the AMBA CHI protocol [5] with AXI interfaces for connecting I/O
coherent Managers.

Fully coherent
agent

Fully coherent
agent

I/O coherent agent

Shareable cache Shareable cache

Coherent interconnect and cache

CHI CHI

CHI CHI

AXI

AXI

Figure A9.2: Example use of I/O coherency

When an I/O coherent Manager issues a Shareable read request, the coherent interconnect tries to find the data by
snooping appropriate coherent caches and checking Shareable lines within its caches. If the data cannot be found,
a request is sent downstream towards memory. When the data is returned, it must not be cached by the I/O
coherent Manager because the data can become stale.

When an I/O coherent Manager issues a Shareable write request (WriteUniquePtl or WriteUniqueFull), the
coherent interconnect issues clean and invalidation requests to the coherent caches to ensure that there are no local
copies. It then writes the data into a cache or towards memory. For a partial cache line write, any Dirty data found
in coherent caches can be merged with the write.

The Shareable_Cache_Support property must be False for an I/O coherent interface.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

140

Chapter A9. Caches
A9.5. Caching Shareable lines

A9.5 Caching Shareable lines

An AXI-based cache that is downstream of a coherent interconnect has the option to store Shareable lines in
addition to Non-shareable cache lines. This has the advantages that:

• Clean evictions of Shareable lines can be cached but must not be written back to memory.

• Dirty data from Shareable lines can be passed to upstream Shareable caches.

To enable this, additional Opcodes and responses are required. The cache must also track which lines are Shareable
if it also stores lines from the Non-shareable Domain. In this case, a valid cache line can have one of four states:

• Clean

• Dirty

• Shareable Clean

• Shareable Dirty

The rules regarding which Opcodes can hit which cache lines are shown in Table A9.8.

Table A9.8: Rules for caching Shareable lines

Opcode Domain
Cache state

Clean Dirty Shareable
Clean

Shareable
Dirty

Read*
Non-shareable Permitted to hit Permitted to hit Must not hit Permitted to hit1

Shareable Permitted to hit Must hit Permitted to hit Must hit2

Write*
Non-shareable Must hit Must hit Must not hit Permitted to hit1

Shareable Must hit Must hit Must hit Must hit

CleanShared*
Non-shareable Permitted to hit Must hit Permitted to hit Permitted to hit

Shareable Permitted to hit Must hit Permitted to hit Must hit

CleanInvalid* / MakeInvalid
Non-shareable Must hit Must hit Permitted to hit3 Permitted to hit3

Shareable Must hit Must hit Must hit Must hit

InvalidateHint / Prefetch
Non-shareable Permitted to hit Permitted to hit Permitted to hit Permitted to hit

Shareable Permitted to hit Permitted to hit Permitted to hit Permitted to hit

StashOnce*
Non-shareable Permitted to hit Permitted to hit Must not hit Permitted to hit

Shareable Permitted to hit Permitted to hit Permitted to hit Permitted to hit

∗ Includes all variants of the Opcode.
1 The line must no longer be marked as Shareable.
2 Dirty data can be provided upstream if the request was ReadShared.
3 Must hit if RME_Support is True.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

141

Chapter A9. Caches
A9.5. Caching Shareable lines

A9.5.1 Opcodes to support reading and writing full cache lines

The following Opcodes can be used to read and write full cache lines of data. Transactions using these Opcodes
must be cache line sized and Regular. For write transactions all write strobes must be asserted.

ReadClean

A full cache line read from a Shareable location, where the data is likely to be allocated in an upstream cache. The
read data must be Clean.

This Opcode can be used if the Shareable_Cache_Support and Shareable_Transactions properties are both True.

ReadShared

A full cache line read from a Shareable location, where the data is likely to be allocated in an upstream cache. The
read data can be Clean or Dirty. If the data is Dirty, the line must be allocated upstream, and the response for all
transfers of read data must be OKAYDIRTY instead of OKAY.

This Opcode can be used if the Shareable_Cache_Support and Shareable_Transactions properties are both True.

WriteNoSnoopFull

A Non-shareable write of a full cache line where the data is Dirty and not allocated upstream.

An upstream cache can issue a WriteNoSnoopFull transaction when it evicts a Non-shareable Dirty cache line or
when streaming write data which is cache line sized. If a downstream cache receives a WriteNoSnoopFull request,
it can allocate the line knowing that the line is not allocated upstream.

This Opcode can be used if the WriteNoSnoopFull_Transaction or Shareable_Cache_Support property is True.

Table A9.9: WriteNoSnoopFull_Transaction property

WriteNoSnoopFull_Transaction Default Description

True WriteNoSnoopFull is supported.

False Y WriteNoSnoopFull is not supported unless
Shareable_Cache_Support is True.

WriteUniqueFull

A Shareable write of a full cache line where the data is Dirty but was not allocated upstream. This transaction is
used by an I/O coherent Manager to write to a cache line that might be stored in a cache within the coherent
domain. A system cache can allocate the line as Shareable Dirty.

This Opcode can be used if the Shareable_Transactions property is True.

WriteBackFull

A WriteBackFull transaction can be used when a Shareable Dirty line is evicted from a coherent cache. This
transaction enables a system cache to allocate the line as Shareable Dirty.

This Opcode can be used if the Shareable_Cache_Support and Shareable_Transactions properties are both True.

WriteEvictFull

A WriteEvictFull transaction can be used when a Shareable Clean line is evicted from a coherent cache. This
transaction enables a system cache to allocate the line as Shareable Clean.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

142

Chapter A9. Caches
A9.5. Caching Shareable lines

A Shareable Clean line must not be exposed to any agents outside of the Shareable Domain because the line might
become stale within caches in the Shareable Domain. For the same reason, data from a WriteEvictFull must not
update memory.

This Opcode can be used if the Shareable_Cache_Support and Shareable_Transactions properties are both True.

A9.5.2 Configuration of Shareable cache support

The Shareable_Cache_Support property is used to indicate whether an interface supports the additional transaction
Opcodes required for the storage of coherent cache lines.

Table A9.10: Shareable_Cache_Support property

Shareable_Cache_Support Default Description

True Additional Opcodes for Shareable cache
lines are supported.

False Y Additional Opcodes for Shareable cache
lines are not supported.

The compatibility between Manager and Subordinate interfaces according to the values of the
Shareable_Cache_Support property is shown in Table A9.11.

Table A9.11: Shareable_Cache_Support compatibility

Shareable_Cache_Support Subordinate: False Subordinate: True

Manager: False Compatible. Compatible.

Manager: True Incompatible.
Alternative Opcodes must be used.

Compatible.

Shareable requests can also be controlled at reset-time using an optional Manager input signal,
BROADCASTSHAREABLE.

Table A9.12: BROADCASTSHAREABLE signal

Name Width Default Description

BROADCASTSHAREABLE 1 0b1 Manager tie-off input, used to control the issuing of
Shareable transactions from an interface.

When BROADCASTSHAREABLE is present and deasserted, all transactions are converted to Non-shareable
equivalents before they are sent, as shown in Table A9.13.

Table A9.13: Opcode alternatives

Opcode BROADCASTSHAREABLE is LOW

WriteUniquePtl WriteNoSnoop

WriteUniqueFull WriteNoSnoop or WriteNoSnoopFull

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

143

Chapter A9. Caches
A9.5. Caching Shareable lines

WriteBackFull WriteNoSnoop or WriteNoSnoopFull

WriteEvictFull - (request must be dropped)

CMO (Shareable) CMO (Non-shareable)

WriteUniquePtlStash WriteNoSnoop

WriteUniqueFullStash WriteNoSnoop or WriteNoSnoopFull

WritePtlCMO (Shareable) WritePtlCMO (Non-shareable)

StashOnceShared (Shareable) StashOnceShared (Non-shareable)

StashOnceUnique (Shareable) StashOnceUnique (Non-shareable)

Prefetch (Shareable) Prefetch (Non-shareable)

ReadOnce ReadNoSnoop

ReadShared ReadNoSnoop

ReadClean ReadNoSnoop

ReadOnceCleanInvalid ReadNoSnoop

ReadOnceMakeInvalid ReadNoSnoop

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

144

Chapter A9. Caches
A9.6. Prefetch transaction

A9.6 Prefetch transaction

When a Manager has indication that it might need data for an address but does not want to commit to reading it yet,
it can send a Prefetch request to the system that it might be advantageous to prepare the location for reading. This
request to the system can cause the allocation of data into a downstream cache or from off-chip memory before the
Manager makes the actual read request.

The Prefetch request is not required to be ordered with respect to other requests such as CMOs, therefore a
Prefetch must not be used to signal that a line can be fetched into a managed or visible cache.

The PREFETCHED response to a read request indicates that the transaction has hit upon prefetched data. The
Manager can use this as part of a heuristic to determine if it continues issuing Prefetch requests.

In AMBA CHI [5], the equivalent of a Prefetch request is PrefetchTgt which can be issued alongside a coherent
request to the same address. The PrefetchTgt can bypass any coherency checks and cause the memory controller to
prefetch the data in case the coherent request does not find the data in any shared caches. If the memory controller
uses an AXI interface, the CHI PrefetchTgt request can be converted to an AXI Prefetch.

A9.6.1 Rules for the prefetch transaction

A Prefetch is a data-less transaction, the rules are:

• The Prefetch transaction consists of a request on the AW channel and a single response transfer on the B
channel, there is no data transfer.

• A Prefetch request is signaled using the AWSNOOP Opcode of 0b01111.

• A Prefetch request must be cache line sized with the following constraints:

– The transaction is Regular, see A4.1.8 Regular transactions.

– AWCACHE[1] is asserted, that is a Normal transaction.

– AWDOMAIN is Non-shareable or Shareable.

– AWLOCK is deasserted, not exclusive access.

• The ID value must be unique-in-flight, which means:

– A Prefetch request can only be issued if there are no outstanding write transactions using the same
AWID.

– The Manager must not issue a request on the write channel with the same AWID as an outstanding
Prefetch request.

– If present on the interface, AWIDUNQ must be asserted for Prefetch transactions.

• The Manager may or may not follow a Prefetch request with a non-Prefetch request to the same address.

• A Subordinate interface at any level can chose to propagate or respond to a Prefetch request.

• It is permitted to respond to a Prefetch request with OKAY, DECERR, SLVERR, or TRANSFAULT. An
OKAY response can be sent irrespective of whether the Subordinate acts on the Prefetch request.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

145

Chapter A9. Caches
A9.6. Prefetch transaction

The Prefetch_Transaction property is used to indicate whether a component supports the Prefetch Opcode as
shown in Table A9.14.

Table A9.14: Prefetch_Transaction property

Prefetch_Transaction Default Description

True Prefetch is supported.

False Y Prefetch is not supported.

A9.6.2 Response for prefetched data

If a read request hits on data which has been prepared due to a previous Prefetch request, the Subordinate may
return a PREFETCHED response. This can be used by the Manager to determine the success rate of its Prefetch
requests.

The PREFETCHED response has the following rules and recommendations:

• The PREFETCHED response is signaled using RRESP encoding of 0b100.

• When Prefetch_Transaction is True, RRESP_WIDTH must be 3 to enable the signaling of the
PREFETCHED response.

• PREFETCHED indicates that read data is valid and has come from a prefetched source.

• PREFETCHED can be used for a response to the following transaction types:

– ReadNoSnoop

– ReadOnce

– ReadClean

– ReadShared

– ReadOnceCleanInvalid

– ReadOnceMakeInvalid

• A PREFETCHED response cannot be sent for an exclusive read.

• It is recommended that within a cache line, the PREFETCHED response is used for all data transfers or no
data transfers. If a transaction spans cache lines, there can be a mixture of PREFETCHED and other
responses for each cache line accessed.

• A PREFETCHED response can only be sent if the Prefetch_Transaction property is True for the interface.

• A PREFETCHED response can be sent to a Manager even if the Manager has not sent a Prefetch request to
that location. For example, if a Manager happens to read data which was prefetched by another Manager.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

146

Chapter A9. Caches
A9.7. Cache Stashing

A9.7 Cache Stashing

Cache stashing enables one component to indicate that data should be placed in another cache in the system. This
technique can be used to ensure that data is located close to its point of use, potentially improving the performance
of the overall system. The AXI protocol supports cache stashing requests with or without a stash target identifier.

Cache stashing is a hint. A cache, or system component can choose to ignore the stash part of a request.

I/O coherent AXI Managers can request that data is stashed in fully coherent Managers with AMBA CHI
interfaces [5].

A9.7.1 Stash transaction Opcodes

There are four Opcodes that can be used for cache stashing.

WriteUniquePtlStash

Write to a Shareable location with an indication that the data should be allocated into a cache. Any number of
bytes within the cache line can be written, including all bytes or zero bytes.

WriteUniqueFullStash

Write a full cache line of data to a Shareable location with an indication that the data should be allocated into a
cache. The transaction must be cache line sized and Regular. All write strobes must be asserted.

StashOnceShared

A data-less transaction which indicates that a cache line should be fetched into a particular cache. Other copies of
the line are not required to be invalidated.

StashOnceUnique

A data-less transaction which indicates that a cache line should be fetched into a particular cache. It is
recommended that all other copies are invalidated.

A StashOnceUnique transaction can cause the invalidation of a cached copy of a cache line and care must be taken
to ensure that such transactions do not interfere with exclusive access sequences.

For an interface that supports the Untranslated Transactions feature, an extra stash transaction is supported. The
StashTranslation transaction is used to indicate to a System Memory Management Unit (SMMU) that a translation
should be obtained for the address that is supplied with the StashTranslation transaction. See A14.7
StashTranslation Opcode.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

147

Chapter A9. Caches
A9.7. Cache Stashing

A9.7.2 Stash transaction signaling

Stash requests are signaled on the write request channel and have a single response transfer on the write response
channel. Write with stash transactions also include write data.

A stash request has constraints on Domain, Size, and Length shown in Table A9.15. Cache stash transactions are
not permitted to cross a cache line boundary.

Table A9.15: Domain, Size, and Length constraints for stash requests

Opcode AWSNOOP Domain Size, Length

WriteUniquePtlStash 0b1000 Shareable Cache size or smaller

WriteUniqueFullStash 0b1001 Shareable Cache line sized and Regular

StashOnceShared 0b1100 Non-shareable, Shareable Cache line sized and Regular

StashOnceUnique 0b1101 Non-shareable, Shareable Cache line sized and Regular

The following constraints also apply to all stash request Opcodes:

• AWCACHE[1] is 0b1 (Modifiable)

• AWLOCK is 0b0 (not exclusive access)

• AWTAGOP is 0b00 (Invalid)

• AWATOP is 0b000000 (Non-atomic operation)

A9.7.3 Stash request Domain

The Domain of a stash request determines which caches are checked for the cache line and how the line should be
fetched and stored.

A stash request to a Shareable location implies that the line can be stored in a peer or inline cache. If the stash
request causes a cache to issue a downstream request, it should be Shareable if possible. Writes with stash must
always be to a Shareable location.

A stash request to a Non-shareable location implies that the line can be stored in an inline cache. If the stash
request causes a cache to issue a downstream request, it must be Non-shareable. StashOnceShared and
StashOnceUnique Opcodes can be to Shareable or Non-shareable locations.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

148

Chapter A9. Caches
A9.7. Cache Stashing

A9.7.4 Stash target identifiers

A stash request can optionally include target identifiers to indicate a specific cache that is preferred for the data to
be stored. This specification does not define the precise details of this identification mechanism. It is expected that
any agent that is performing a stash operation knows the identifier to use for a given stash transaction.

This specification defines two levels of identification:

• A Node ID to identify the physical interface that the cache stash should be sent to.

• A Logical Processor ID to identify a functional unit that is associated with that physical interface.

For example, a stash transaction can specify a processor cluster interface and specific cache within that cluster.

The signals used to indicate stash targets are shown in Table A9.16.

Table A9.16: Signals used to indicate stash targets

Name Width Default Description

AWSTASHNID 11 All zeros Node Identifier of the target for a stash operation.

AWSTASHNIDEN 1 0b0 HIGH to indicate that the AWSTASHNID signal is valid.

AWSTASHLPID 5 0x00 Logical Processor Identifier within the target for a stash
operation.

AWSTASHLPIDEN 1 0b0 HIGH to indicate that the AWSTASHLPID signal is valid.

The Node ID and Logical Processor ID signals are optional on an interface, controlled using the
STASHNID_Present and STASHLPID_Present properties, respectively.

Table A9.17: STASHNID_Present property

STASHNID_Present Default Description

True AWSTASHNID and AWSTASHNIDEN are present.

False Y AWSTASHNID and AWSTASHNIDEN are not present.

Table A9.18: STASHLPID_Present property

STASHLPID_Present Default Description

True AWSTASHLPID and AWSTASHLPIDEN are present.

False Y AWSTASHLPID and AWSTASHLPIDEN are not present.

Each stash target identifier has an enable signal so NID and LPID can be controlled independently.

• For stash transactions, any combination of target enables is permitted.

• For non-stash transactions, AWSTASHLPIDEN and AWSTASHNIDEN must be LOW.

• When AWSTASHNIDEN is LOW, AWSTASHNID is invalid and must be zero.

• When AWSTASHLPIDEN is LOW, AWSTASHLPID is invalid and must be zero.

• It is permitted, but not recommended to send a stash transaction with a stash target that indicates a

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

149

Chapter A9. Caches
A9.7. Cache Stashing

component that does not support cache stashing. The indication of a stash target within a stash transaction
does not affect which components are permitted to access and cache a given cache line.

For WriteUniquePtlStash and WriteUniqueFullStash requests without a target, the following is recommended:

• If the interconnect can determine that the line is held in a single cache before the write occurs, then stash the
cache line back to that cache.

• If the cache line is not held in any cache before the write occurs, then stash the cache line in a shared system
cache.

For StashOnceShared and StashOnceUnique requests without a target:

• If the interconnect can determine that the cache line is not in any cache, then it is recommended to stash the
cache line in a shared system cache.

• A component can use this to prefetch a cache line to a downstream cache for its own use.

A9.7.5 Transaction ID for stash transactions

There are no constraints on the use of AXI ID values for WriteUniquePtlStash and WriteUniqueFullStash
transactions.

StashOnceShared and StashOnceUnique can be referred to as StashOnce transactions.

StashOnce transactions must not use the same AXI ID values that are used by non-StashOnce transactions that are
outstanding at the same time. This rule ensures that there are no ordering constraints between StashOnce
transactions and other transactions. Therefore, a component that discards a StashOnce request can give an
immediate response without checking ID ordering requirements.

StashOnce transactions and non-StashOnce transactions are permitted to use the same AXI ID value, provided that
the same ID value is not used by both a StashOnce transaction and a non-StashOnce at the same time.

There can be multiple outstanding StashOnce transactions with the same ID.

There can be multiple outstanding non-StashOnce transactions with the same ID.

The use of a unique ID value for a StashOnce transaction ensures that these transactions can be given an
immediate response if they are not supported.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

150

Chapter A9. Caches
A9.7. Cache Stashing

A9.7.6 Support for stash transactions

The Cache_Stash_Transactions property is used to indicate whether an interface supports cache stashing, as shown
in Table A9.19.

Table A9.19: Cache_Stash_Transactions property

Cache_Stash_Transactions Default Description

True All cache stashing Opcodes are supported. There may or
may not be a stash target.

Basic Only the StashOnceShared Opcode is supported. A stash
target is not permitted, STASHLPID_Present and
STASHNID_Present must be False.

False Y Cache stashing is not supported and associated signals are
omitted.

When Cache_Stash_Transactions is False, STASHNID_Present and STASHLPID_Present must both be False.

The compatibility between Manager and Subordinate interfaces according to the values of the
Cache_Stash_Transactions property is shown in Table A9.20.

Table A9.20: Stash transactions compatibility

Cache_Stash_Transactions Subordinate: False Subordinate: Basic Subordinate: True

Manager: False Compatible. Compatible. Compatible.

Manager: Basic Incompatible, action
must be taken.

Compatible. Compatible.

Manager: True Incompatible, action
must be taken.

Incompatible, action
must be taken.

Compatible.

If a Manager issues stash requests to a target that does not support them, action can be taken in the Manager or
interconnect as shown in Table A9.21.

Table A9.21: Action needed if the target does not support stash transactions

Stash transaction Action

WriteUniquePtlStash Convert to WriteUniquePtl.

WriteUniqueFullStash Convert to WriteUniqueFull.

StashOnceShared Do not propagate and give an immediate response.

StashOnceUnique Do not propagate and give an immediate response.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

151

Chapter A9. Caches
A9.8. Deallocating read transactions

A9.8 Deallocating read transactions

Deallocating read transactions can be used when a Manager requires data which is not likely to be used again by
any Manager. A cache can use this as a hint to evict the line and make the resource available for other data.

The DeAllocation_Transactions property is used to indicate whether a component supports deallocating
transactions as shown in Table A9.22.

Interoperability between a component that issues deallocating transactions and a component that does not support
them can be performed by converting the Opcode to ReadOnce.

Table A9.22: DeAllocation_Transactions property

DeAllocation_Transactions Default Description

True Deallocating transactions are supported.

False Y Deallocating transactions are not supported.

A9.8.1 Deallocating read Opcodes

This specification defines two deallocating transaction Opcodes on the read request channel:

ReadOnceCleanInvalid (ROCI)

This request reads a snapshot of the current value of the cache line. It is recommended, but not required that any
cached copy of the cache line is deallocated. If a Dirty copy of the cache line exists, and the cache line is
deallocated, then the Dirty copy must be written back to main memory.

ReadOnceCleanInvalid is signaled using an ARSNOOP value of 0b0100.

ReadOnceMakeInvalid (ROMI)

This request reads a snapshot of the current value of the cache line. It is recommended, but not required that any
cached copy of the cache line is deallocated. It is permitted, but not required that a Dirty copy of the cache line is
discarded. The Dirty copy of the cache line does not need to be written back to main memory.

ReadOnceMakeInvalid is signaled using an ARSNOOP value of 0b0101.

A9.8.2 Rules and recommendations

Deallocating transactions are only permitted to access one cache line at a time and are not permitted to cross a
cache line boundary. Size must be cache line sized or smaller.

A ROMI request to part of a cache line can result in the invalidation of the entire cache line. Some
implementations might not support the deallocation behavior for transactions that are less than a cache line and
instead convert the transaction to ReadOnce in such cases.

ROCI and ROMI are only supported to the Shareable Domain, so the Shareable_Transactions property must be
True if DeAllocation_Transactions is True.

For a ROMI transaction, it is required that the invalidation of the cache line is committed before the return of the
first item of read data for the transaction. The invalidation of the cache line is not required to have completed at
this point. However, it must be ensured that any later write transaction from any agent that starts after this point, is
guaranteed not to be invalidated by this transaction.

The following considerations apply to the use of deallocating transactions:

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

152

Chapter A9. Caches
A9.8. Deallocating read transactions

• Caution is needed when deallocating transactions are issued to the same cache line that other agents are
using for exclusive accesses. This is because the deallocation can cause an exclusive sequence to fail.

• Apart from the interaction with exclusive accesses, the ROCI transaction only provides a hint for
deallocation of a cache line and has no other impact on the correctness of a system.

• The use of the ROMI transaction can cause the loss of a Dirty cache line. The use of this transaction must be
strictly limited to scenarios when it is known that it is safe to do so.

• Deallocating transactions do not guarantee that a cache line will be cleaned or invalidated, so cannot be used
to ensure that data is visible to all observers.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

153

Chapter A9. Caches
A9.9. Invalidate hint

A9.9 Invalidate hint

The InvalidateHint transaction is a data-less deallocation hint. It can be used when a Manager has finished working
with a data set and that data might be allocated in a downstream cache. An InvalidateHint request informs the
cache that the line is no longer required and can be invalidated. A write-back of the line is permitted but not
required.

InvalidateHint is not required to be executed for functional correctness, so can be terminated at any point in the
system by responding with BRESP of OKAY.

Care is needed when using an InvalidateHint transaction to avoid exposure of previously overwritten values. This
can be achieved either by:

• Ensuring that a clean operation following a scrubbing write ensures that the write has been propagated
sufficiently far that it is not removed by the Invalidate Hint transaction.

• Ensuring the use of the InvalidateHint transaction is limited to address ranges that will not contain sensitive
information.

A9.9.1 Invalidate Hint signaling

InvalidateHint is a data-less transaction using AW and B channels.

The following constraints apply to an InvalidateHint request:

• AWSNOOP is 0b10010.

– AWSNOOP must be 5b wide if the InvalidateHint_Transaction property is True.

• AWDOMAIN can be Non-shareable or Shareable.

• AWBURST is INCR.

• AWSIZE and AWLEN must be cache line sized and Regular.

• AWCACHE is Normal Cacheable.

• AWID is unique-in-flight, which means:

– An InvalidateHint request can only be issued if there are no outstanding transactions on the write
channels using the same ID value.

– A Manager must not issue a request on the write channels with the same ID as an outstanding
InvalidateHint transaction.

– If present, AWIDUNQ must be asserted for an InvalidateHint request.

• AWLOCK is deasserted, not an exclusive access.

• AWTAGOP is Invalid.

• AWATOP is Non-atomic operation.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

154

Chapter A9. Caches
A9.9. Invalidate hint

A9.9.2 Invalidate Hint support

The InvalidateHint_Transaction property is used to indicate whether an interface supports the InvalidateHint
transaction, as shown in Table A9.23.

Table A9.23: InvalidateHint_Transaction property

InvalidateHint_Transaction Default Description

True InvalidateHint is supported.

False Y InvalidateHint is not supported.

The compatibility between Manager and Subordinate interfaces according to the values of the
InvalidateHint_Transaction property is shown in Table A9.24.

Table A9.24: InvalidateHint_Transaction compatibility

InvalidateHint_Transaction Subordinate: False Subordinate: True

Manager: False Compatible. Compatible.

Manager: True Not compatible.
An adapter that responds OKAY to
InvalidateHint could be used to
make it compatible.

Compatible.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

155

Chapter A10
Cache maintenance

This chapter describes cache maintenance operations (CMOs) that assist with software cache management.

It contains the following sections:

• A10.1 Cache Maintenance Operations

• A10.2 Actions on receiving a CMO

• A10.3 CMO request attributes

• A10.4 CMO propagation

• A10.5 CMOs on the write channels

• A10.6 Write with CMO

• A10.7 CMOs on the read channels

• A10.8 CMOs for Persistence

• A10.9 Cache Maintenance and Realm Management Extension

• A10.10 Processor cache maintenance instructions

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

156

Chapter A10. Cache maintenance
A10.1. Cache Maintenance Operations

A10.1 Cache Maintenance Operations

Cache maintenance operations are requests that instruct caches to clean and invalidate cache lines. Unlike the
allocation and deallocation hints, it is mandatory that a cache actions a CMO that targets a line it has cached.

CMOs can be transported on either the read or write channels.

Transporting CMOs on read channels is included in this specification to support legacy components. It is
recommended that the new designs transmit CMOs on the write channels.

The specification supports the following cache maintenance operations.

CleanShared (CS)

When completed, all cached copies of the addressed line are Clean and any associated writes are observable.

CleanSharedPersist (CSP)

When completed, all cached copies of the addressed line are Clean and any associated writes are observable and
have reached the Point of Persistence (PoP). See A10.8 CMOs for Persistence.

CleanSharedDeepPersist (CSDP)

When completed, all cached copies of the addressed line are Clean and any associated writes are observable and
have reached the Point of Deep Persistence (PoDP). See A10.8 CMOs for Persistence.

CleanInvalid (CI)

When completed, all cached copies of the addressed line are invalidated, having been written to memory if they
were Dirty. Any associated writes are observable.

CleanInvalidPoPA (CIPA)

When completed, all cached copies of the addressed line are invalidated, and any Dirty cached copy is written past
the Point of Physical Aliasing (PoPA). See A10.9 Cache Maintenance and Realm Management Extension.

MakeInvalid (MI)

When completed, all cached copies of the addressed line are invalidated, and any Dirty cached copy might have
been discarded.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

157

Chapter A10. Cache maintenance
A10.2. Actions on receiving a CMO

A10.2 Actions on receiving a CMO

When a component receives a CMO, it must do the following:

1. If the component is a cache and the CMO is cacheable, it must look up the line.

2. If the component is a coherent interconnect and the CMO is Shareable, a CMO snoop must be sent to any
cache that might have the line:

• Allocated, for an Invalidate CMO

• Dirty, for a Clean CMO

Note that a coherent protocol such as AMBA CHI [5] is required to send CMO snoop requests.

3. For a Clean CMO, write back any dirty data that is found in the cache or peer caches.

It is recommended that Write-Through No-Allocate is used for writes to memory which will be followed by
a CMO to the same line. This ensures that the line will be looked up in any downstream cache but will not be
allocated.

4. Wait for all snoops and associated writes to receive a response.

5. If the CMO does not need to be sent downstream, the component can issue a response to the CMO.

6. If the CMO does need to be sent downstream, the CMO must be sent and the response that is returned must
be propagated when it is received from downstream.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

158

Chapter A10. Cache maintenance
A10.3. CMO request attributes

A10.3 CMO request attributes

The following rules apply to CMO transactions:

• The request must be cache line sized and Regular. See A4.1.8 Regular transactions for more details.

• The Domain can be Non-shareable or Shareable.

– System Domain is not permitted, which means that CMO transactions must be Normal rather than
Device.

The AxCACHE and AxDOMAIN attributes indicate which caches must action a CMO, as shown in Table A10.1.

Table A10.1: CMO applicability

AxCACHE AxDOMAIN CMO applies to

Device System N/A (not legal for CMOs)

Non-cacheable
Non-shareable No caches

Shareable Peer caches

Cacheable
Non-shareable In-line caches

Shareable Peer caches and in-line caches

To maintain coherency, the following recommendations apply to CMOs and non-CMOs:

• If a location is cacheable for non-CMO transactions, it should be cacheable for CMO transactions.

• If a location is in the Shareable Domain for non-CMO transactions, it should be in the Shareable Domain for
CMO transactions.

• If a location is in the Non-shareable Domain for non-CMO transactions, it can be in the Non-shareable or
Shareable Domain for CMO transactions.

• A Manager should not issue a read request that permits it to allocate a line, while there is an outstanding
CMO to that line.

• Allocation hints, such as AxCACHE[3:2], are not required to match between CMO and non-CMO
transactions to the same cache line.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

159

Chapter A10. Cache maintenance
A10.4. CMO propagation

A10.4 CMO propagation

The propagation of CMOs downstream of components, depends on the system topology. A CMO must be
propagated downstream if the CMO is cacheable and there is a downstream cache which might have allocated the
line and there is an observer downstream of that cache.

Two mechanisms are defined for controlling whether CMOs are propagated from a Manager interface.

• At design-time, using the properties CMO_On_Write or CMO_On_Read.

• At run-time, using the optional BROADCASTCACHEMAINT and BROADCASTSHAREABLE tie-off
inputs to a Manager interface.

Table A10.2: BROADCASTCACHEMAINT signal

Name Width Default Description

BROADCASTCACHEMAINT 1 0b1 Manager tie-off input, used to control the issuing
of CMOs from an interface.

When BROADCASTCACHEMAINT and BROADCASTSHAREABLE are both present and deasserted:

• CleanShared, CleanInvalid and MakeInvalid requests are not issued.

• WritePtlCMO is converted to WriteNoSnoop.

• WriteFullCMO is converted to WriteNoSnoop or WriteNoSnoopFull.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

160

Chapter A10. Cache maintenance
A10.5. CMOs on the write channels

A10.5 CMOs on the write channels

The CMO_On_Write property is used to indicate whether an interface supports CMOs on the write channels.

Table A10.3: CMO_On_Write property

CMO_On_Write Default Description

True CMOs are supported on the AW and B channels.

False Y CMOs are not supported on the AW and B channels.
They are either signaled on the read channels or not used
by this interface.

On the write channels, CMOs can be sent as a stand-alone operation or combined with a data write. The
AWSNOOP encodings that can be used to signal CMO requests on the AW channel are shown in Table A10.4.
For more information on the combined write with CMO operations see A10.6 Write with CMO.

Table A10.4: AWSNOOP encodings

AWSNOOP Operation Enable property Description

0b0110 CMO CMO_On_Write Stand-alone CMO.

0b1010 WritePtlCMO Write_Plus_CMO CMO combined with a write which is less than or
equal to one cache line.

0b1011 WriteFullCMO Write_Plus_CMO CMO combined with a write which is exactly one
cache line.

The AWCMO signal indicates the type of CMO that is requested, it is present on the AW channel when
CMO_On_Write is True.

Table A10.5: AWCMO signal

Name Width Default Description

AWCMO AWCMO_WIDTH 0b000
(CleanInvalid)

Indicates the CMO type for write opcodes that
include a cache maintenance operation.

The width of AWCMO is determined by the property AWCMO_WIDTH.

Name Values Default Description

AWCMO_WIDTH 0, 2, 3 0 Width of AWCMO in bits.

The rules for AWCMO_WIDTH are:

• Must be 0 if CMO_On_Write is False. This means that AWCMO is not on the interface.

• Must be 2 if CMO_On_Write is True and RME_Support is False.

• Must be 3 if CMO_On_Write is True and RME_Support is True.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

161

Chapter A10. Cache maintenance
A10.5. CMOs on the write channels

The encodings for AWCMO are shown in Table A10.7. An encoding cannot be used if the associated enable
property is False.

Table A10.7: AWCMO encodings

AWCMO Label Enable property Meaning

0b000 CleanInvalid - Clean and invalidate

0b001 CleanShared - Clean only

0b010 CleanSharedPersist Persist_CMO Clean to the Point of Persistence

0b011 CleanSharedDeepPersist Persist_CMO Clean to the Point of Deep Persistence

0b100 CleanInvalidPOPA RME_Support Clean and invalidate to the Point of
Physical Aliasing

0b101 to
0b111

RESERVED - -

Note that MakeInvalid is not supported on the write channels.

When AWSNOOP is not CMO, WritePtlCMO or WriteFullCMO, AWCMO must be 0b000.

A CMO transaction on the write channels consists of a request on the AW channel and a response on the B
channel. There are no transfers on the W channel in a CMO transaction.

The write response to the CMOs CleanInvalid and CleanShared have a single response transfer on the B channel.
This indicates that all caches are Clean and/or invalid within the specified Domain and any associated writes are
observable.

The Persist CMOs are described in A10.8 CMOs for Persistence and POPA CMO is described in A10.9 Cache
Maintenance and Realm Management Extension.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

162

Chapter A10. Cache maintenance
A10.6. Write with CMO

A10.6 Write with CMO

Cache maintenance operations are often used with a write to memory. For example:

• A write from an I/O agent which must be made visible to observers which are downstream of caches.

• A write to persistent memory that must ensure that all copies of the line are also cleaned to the point of
persistence.

• A CMO that causes a write back of dirty data, which must be followed by the CMO.

A write with CMO combines a write with a CMO to improve the efficiency of this type of scenario. It is expected
that some Managers will natively generate a write with CMO. In other cases, a cache or interconnect will combine
a CMO with a write before propagating them downstream.

The Write_Plus_CMO property is used to indicate whether a component supports combined write and CMOs on
the write channels.

Table A10.8: Write_Plus_CMO property

Write_Plus_CMO Default Description

True Combined write and cache maintenance operations are
supported.

False Y Combined write and cache maintenance operations are
not supported.

If the Write_Plus_CMO property is True, the CMO_On_Write property must also be True.

When Write_Plus_CMO is True, the WritePtlCMO and WriteFullCMO Opcodes can be used to indicate a write
with CMO.

A write with CMO can use any of the CMO types as indicated by AWCMO.

Some example uses of write with CMO are shown in the Table A10.9.

Table A10.9: Examples of write with CMO transactions

Operation Primary use-case Action

Shareable WritePtlCMO
with CleanShared

An I/O agent writing less than a cache
line to a Shareable region, where the
data must be visible to observers
downstream of a cache.

All in-line and peer caches must look up the
line and write back any dirty data. Data from
a Dirty cache line can be merged with the
partial write to form a WriteFullCMO with
CleanShared to go downstream.

Shareable WriteFullCMO
with CleadSharedPersist

An I/O agent writing a cache line to a
Shareable region, where the data must
reach the Point of Persistence.

The coherent interconnect issues a
MakeInvalid snoop to coherent peer caches.
In-line caches look up the line and either
update or invalidate any copies. The write
and CleanSharedPersist must be propagated
if there is a Point of Persistence downstream.

Non-shareable
WriteFullCMO with
CleanInvalid

Issued by a cache when a CleanInvalid
CMO has hit a Dirty line and caused a
write to memory.

All in-line cache entries must be cleaned and
invalidated. The write and CleanInvalid must
be propagated if there are observers
downstream.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

163

Chapter A10. Cache maintenance
A10.6. Write with CMO

A10.6.1 Attributes for write with CMO

A write with CMO has the following attribute constraints:

• AWSNOOP is 0b1010 to indicate WritePtlCMO and 0b1011 to indicate WriteFullCMO.

• AWDOMAIN is Non-shareable or Shareable.

• AWCACHE[1] is asserted, the transaction must be Modifiable.

• AWLOCK is deasserted, not an exclusive access.

A WriteFullCMO must be cache line sized and Regular, see A4.1.8 Regular transactions.

A WritePtlCMO must be cache line sized or smaller and not cross a cache line boundary. The associated CMO
applies to the whole of the addressed cache line. AWBURST must not be FIXED.

The cache maintenance part of the write with CMO is always treated as cacheable and Shareable, irrespective of
AWCACHE and AWDOMAIN.

A10.6.2 Propagation of write with CMO

Propagation of a write with CMO follows the same rules as the propagation of a CMO. It is possible to split a
write with CMO into separate write and CMO transactions for propagation downstream. In that case, either:

• The write is issued first, followed by the CMO on the write request channel with the same ID as the write.

• The write is issued first. When the write response is received, the CMO can be issued on the write or read
channel.

When splitting a write and CMO, if AWDOMAIN is Shareable, then:

• WritePtlCMO becomes WriteUniquePtl.

• WriteFullCMO becomes WriteUniqueFull.

If AWDOMAIN is Non-shareable, then the write becomes WriteNoSnoop or WriteNoSnoopFull.

The CMO is sent as cacheable. If there is a downstream cache in the Shareable Domain, the CMO is sent as
Shareable.

If there is no cache downstream that requires management by cache maintenance, the CMO part of the transaction
can be discarded. If the discarded CMO is a CleanSharedPersist or CleanSharedDeepPersist, the BCOMP and
BPERSIST signals must be set on the write response. See A10.8 CMOs for Persistence for more details.

A10.6.3 Response to write with CMOs

Responses to writes with CMOs follow the same rules as CMOs on the write channel.

A write with CI or CS has a single response transfer which indicates that the write and CMO are both observable.

A write with a CSP or CSDP, has one response that indicates that the write is observable and one response that
indicates that the write has reached the PoP / PoDP.

As with a standalone CSP/CSDP, a Subordinate can optionally combine the two responses into a single transfer.

A write with CMO is not permitted to use the MTE Match opcode, so a write response that is combined with
Persist and Match responses is not necessary. See A13.2 Memory Tagging Extension (MTE) for more details.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

164

Chapter A10. Cache maintenance
A10.6. Write with CMO

A10.6.4 Example flow with a write plus CMO

As an example of a flow using a write with CMO, Figure A10.1 shows an I/O Coherent Manager issuing a
Shareable CleanShared request on the AW channel into a CHI interconnect.

• The snoop generated by the coherent interconnect hits dirty data in the coherent cache.

• The interconnect then issues a Non-shareable WriteFullCMO with CleanShared.

• The system cache looks up the line, overwrites any existing copies and forwards the write request to the
memory. The memory does not need to receive CMOs because its data is observable to all agents.

• The memory controller returns an OKAY response when the data is observable, which is propagated back to
the Manager.

I/O Coherent
Manager (AXI)

I/O Coherent
Manager (AXI)

Coherent
Interconnect (CHI)

Coherent
Interconnect (CHI)

Coherent
Cache (CHI)

Coherent
Cache (CHI)

System
Cache (AXI)

System
Cache (AXI)

Memory
Controller (AXI)

Memory
Controller (AXI)

CleanShared (AW)

CleanShared snoop

Snoop response with data

WriteFullCMO+CS (AW/W)

WriteNoSnoop (AW/W)

OKAY (B)

OKAY (B)

OKAY (B)

Figure A10.1: Example write with CMO

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

165

Chapter A10. Cache maintenance
A10.7. CMOs on the read channels

A10.7 CMOs on the read channels

The CMO_On_Read property is used to indicate whether an interface supports CMOs on the read channels.

Table A10.10: CMO_On_Read property

CMO_On_Read Default Description

True Y CMOs are supported on the AR and R channels.

False CMOs are not supported on the AR and R channels. They
are either signaled on the write channels or not used by
this interface.

A CMO transaction on the read channels consists of a request on the AR channel and a single transfer response on
the R channel. The response indicates that the CMO is observed, and all cache lines have been cleaned and
invalidated if necessary.

The ARSNOOP encodings used to signal CMO requests on the AR channel are shown in Table A10.11.

Table A10.11: ARSNOOP encodings

ARSNOOP Operation

0b1000 CleanShared

0b1001 CleanInvalid

0b1010 CleanSharedPersist

0b1101 MakeInvalid

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

166

Chapter A10. Cache maintenance
A10.8. CMOs for Persistence

A10.8 CMOs for Persistence

Cache maintenance operations for Persistence are used to provide a cache clean to the Point of Persistence or Point
of Deep Persistence. These operations are used to ensure that a store operation, which might be held in a Dirty
cache line, is moved downstream to persistent memory.

The Persist_CMO property is used to indicate whether a component supports cache maintenance for Persistence.

Table A10.12: Persist_CMO property

Persist_CMO Default Description

True Persistent CMOs are supported.

False Y Persistent CMOs are not supported.

Persistent CMOs can be transmitted on either read or write channels, according to the CMO_On_Write and
CMO_On_Read properties.

If CMO_On_Write and CMO_On_Read are both False, Persist_CMO must be False.

A10.8.1 Point of Persistence and Deep Persistence

In systems with non-volatile memory, each memory location has a point in the hierarchy at which data can be
relied upon to be persistent when power is removed. This is known as the Point of Persistence (PoP).

Some systems require multiple levels of guarantee regarding the persistence of data. For example, some data might
need the guarantee that it is preserved on power failure and also backup battery failure. To support such a
requirement, this specification also defines the Point of Deep Persistence (PoDP).

Systems might have different points for the PoP and PoDP, or they might be the same.

A10.8.2 Persistent CMO (PCMO) transactions

The specification supports the following PCMO transactions.

CleanSharedPersist (CSP)

When this completes, all cached copies of the addressed line in the specified Domain are Clean and any associated
writes are observable and have reached the Point of Persistence (PoP).

CleanSharedDeepPersist (CSDP)

When this completes, all cached copies of the addressed line in the specified Domain are Clean and any associated
writes are observable and have reached the Point of Deep Persistence (PoDP).

When a component receives a PCMO, it is processed in the same way as a CleanShared transaction. If a snoop is
required, a CleanShared snoop transaction is used.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

167

Chapter A10. Cache maintenance
A10.8. CMOs for Persistence

A10.8.3 PCMO propagation

The propagation of PCMOs downstream of components depends on the system topology. A PCMO must be
propagated downstream in the following circumstances:

1. If the PCMO is cacheable and there is a downstream cache which might have allocated the cache line and
there is an observer downstream of that cache.

2. If there is a PoP downstream of the component.

3. If the PCMO is a CleanSharedDeepPersist and there is a PoDP downstream of the component.

If (1) applies, but not (2) or (3), then a CleanSharedPersist or CleanSharedDeepPersist can be changed to a
CleanShared before being sent downstream.

If the PCMO is changed to a CleanShared, the Persist response must be sent by the component doing the
transformation.

The propagation of PCMOs can be controlled at reset-time using the optional Manager input
BROADCASTPERSIST.

Table A10.13: BROADCASTPERSIST signal

Name Width Default Description

BROADCASTPERSIST 1 0b1 Manager tie-off input, used to control the issuing
of CleanSharedPersist and
CleanSharedDeepPersist CMOs.

When BROADCASTPERSIST is present and deasserted, CleanSharedPersist and CleanSharedDeepPersist are
converted to CleanShared. This applies to standalone CMOs and write with CMOs.

Note that the issuing of the CleanShared is controlled by the BROADCASTSHAREABLE and
BROADCASTCACHEMAINT signals.

A10.8.4 PCMOs on write channels

When using write channels to transport cache maintenance operations, CleanSharedPersist and
CleanSharedDeepPersist are both supported.

PCMO request on the AW channel

A PCMO request on the write channels is signaled by setting AWSNOOP to CMO, WritePtlCMO or
WriteFullCMO. See Table A10.4 for encodings.

The AWCMO signal then indicates CleanSharedPersist or CleanSharedDeepPersist, see Table A10.7.

When Persist_CMO is False, AWCMO must not indicate CleanSharedPersist or CleanSharedDeepPersist.

PCMO response on the B channel

CleanSharedPersist and CleanSharedDeepPersist transactions on the AW channel have two responses: a
Completion response and a Persist response.

Having separate responses enables system tracking resources to be freed up early, in the case that committing data
to the PoP/PoDP takes a long time. The Completion and Persist responses can occur in any order and can be
separated by responses from other transactions.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

168

Chapter A10. Cache maintenance
A10.8. CMOs for Persistence

The Completion and Persist responses are signaled using two signals that are included on the write response (B)
channel when CMO_On_Write and Persist_CMO are both True.

Table A10.14: Signals for responding to a PCMO

Name Width Default Description

BCOMP 1 0b1 Asserted HIGH to indicate a Completion response.

BPERSIST 1 0b0 Asserted HIGH to indicate a Persist response.

The Completion response indicates that all caches are Clean, and any associated writes are observable. It has the
following rules:

• BCOMP is asserted and BPERSIST is deasserted.

• BID is driven with the same value as AWID.

• If loopback signaling is supported, BLOOP is driven from AWLOOP.

• If AWIDUNQ was asserted, the ID can be reused when this response is received.

• BRESP can take any value that is legal for a PCMO request.

• The Completion response must follow normal response ordering rules.

• If BCOMP is present on an interface, it must be asserted for one response transfer in all transactions on the
write channels.

The Persist response indicates that the data has reached the PoP or PoDP. It has the following rules:

• BCOMP is deasserted and BPERSIST is asserted.

• BID is driven from AWID.

• BIDUNQ can take any value, it is not required to have the same value as AWIDUNQ.

• BLOOP can take any value, it is not required to be driven from AWLOOP.

• BRESP can take any value that is legal for a PCMO request.

• The Persist response has no ordering requirements, it can overtake or be overtaken by other response
transfers.

• If BPERSIST is present on an interface, it must be asserted for one transfer of a response to a CSP or CSDP.
It must be deasserted for all other responses.

A Subordinate can optionally combine the two responses into a single transfer. The following rules apply:

• BCOMP and BPERSIST are both asserted.

• BID is driven from AWID.

• If loopback signaling is supported, BLOOP is driven from AWLOOP.

• BRESP can take any value that is legal for a PCMO request.

• The combined response must follow normal response ordering rules.

• If AWIDUNQ was asserted, the ID can be reused when this response is received.

A Manager can count the number of responses returned with BPERSIST asserted, allowing it to determine when
it has no outstanding persistent operations.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

169

Chapter A10. Cache maintenance
A10.8. CMOs for Persistence

Example PCMO using write channels

An example of a CleanSharedPersist transaction on the write channels is shown in Figure A10.2.

In this example, the write is observable to all other agents in the last-level cache, so the Completion response can
be sent when the request has been hazarded at that point. The Non-volatile Memory sends a combined Completion
and Persist response, so the cache must deassert BCOMP when it propagates the response upstream.

Manager

Manager

Interconnect

Interconnect

System Cache

System Cache

Non-volatile Memory

Non-volatile Memory

CleanSharedPersist (AW)

CleanSharedPersist (AW)

CleanSharedPersist (AW)

OKAY with BCOMP (B)

OKAY with BCOMP (B)Cache line is
observable

long period

OKAY with BCOMP & BPERSIST (B) Data is observable
and persistent

OKAY with BPERSIST (B) Cache must
deassert BCOMP

OKAY with BPERSIST (B)Cache line is
persistent

Figure A10.2: Example PCMO transaction

A10.8.5 PCMOs on read channels

If using read channels to transport cache maintenance operations, only the CleanSharedPersist transaction is
supported. CleanSharedDeepPersist can only be used on the write channels.

A CleanSharedPersist is signaled by setting ARSNOOP to 0b1010.

When Persist_CMO is False, ARSNOOP must not indicate CleanSharedPersist.

There is a single response transfer on the R channel which indicates that the request is observed, and all cache
lines have been cleaned to the PoP.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

170

Chapter A10. Cache maintenance
A10.9. Cache Maintenance and Realm Management Extension

A10.9 Cache Maintenance and Realm Management Extension

When using the Realm Management Extensions (RME), it is required that cache maintenance operations apply to
all lines with the same address and physical address space as the CMO, irrespective of other attributes. Table
A10.15 illustrates which cache lines must be operated on by a CMO with and without RME support. See A5.5
Memory protection and the Realm Management Extension and [4] for more information.

Table A10.15: Cache lines operated on by a CMO

Attribute RME_Support is False RME_Support is True

Address Same cache line Same cache line

Physical Address Space Same, using AxPROT[1] Same, using {AxNSE,AxPROT[1]}

Memory attributes Any AxCACHE Any AxCACHE

Shareability Domain Same Domain Any Domain

When acted upon by a CleanInvalid or CleanShared CMO, data must propagate to a point where it is observable to
all agents using the same physical address space as the CMO.

A10.9.1 CMO to PoPA

RME defines the Point of Physical Aliasing (PoPA), which is the point in a system where data is observable to
accesses from all agents, irrespective of physical address space.

There is a CMO named CleanInvalidPoPA, which helps transitioning ownership of a physical granule from one
Security state to another.

The response to a CleanInvalidPoPA indicates that all cached copies are invalidated, and any Dirty cached copy is
written past the PoPA.

CleanInvalidPoPA has the same rules as other CMOs, regarding lines that are acted upon and transaction attribute
restrictions.

When RME_Support is True, the AWCMO signal is extended to 3b to enable the signaling of a CleanInvalidPoPA,
encodings are:

• 0b000: CleanInvalid

• 0b001: CleanShared

• 0b010: CleanSharedPersist

• 0b011: CleanSharedDeepPersist

• 0b100: CleanInvalidPoPA

A CleanInvalidPoPA can be used stand-alone or combined with a write transaction, so can be used with the
following values of AWSNOOP:

• 0b0110: CMO

• 0b1010: WritePtlCMO

• 0b1011: WriteFullCMO

The CMO_On_Write property must be True to use a CleanInvalidPoPA.

The Write_Plus_CMO property must be True to use a write with CleanInvalidPoPA.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

171

Chapter A10. Cache maintenance
A10.9. Cache Maintenance and Realm Management Extension

When using Memory Encryption Contexts, a CleanInvalidPoPA CMO can be used to ensure that data is cleaned
and invalidated in all caches upstream of the Point of Encryption. See A5.6 Memory Encryption Contexts for more
information.

A10.9.2 CMO to PoPA propagation

An optional input signal, BROADCASTCMOPOPA can be used to control the propagation of CleanInvalidPoPA
at reset-time.

Table A10.16: BROADCASTCMOPOPA signal

Name Width Default Description

BROADCASTCMOPOPA 1 0b1 Manager tie-off input, used to control the issuing
of a CleanInvalidPoPA CMO.

When BROADCASTCMOPOPA is present and deasserted, then CleanInvalidPoPA is converted to CleanInvalid.
This applies to standalone CMOs and write with CMOs.

Note that the issuing of the CleanInvalid is controlled by the BROADCASTSHAREABLE and
BROADCASTCACHEMAINT signals.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

172

Chapter A10. Cache maintenance
A10.10. Processor cache maintenance instructions

A10.10 Processor cache maintenance instructions

The cache maintenance protocol requires that the cache maintenance operations use the AxCACHE and
AxDOMAIN signals to identify the caches on which the cache maintenance operations must operate.

For a processor that has cache maintenance instructions that are required to operate on a different number of
caches than are defined by the AxCACHE and AxDOMAIN values, the cacheability and shareability of the
transaction must be adapted to meet the requirements of the processor.

For example, if a processor instruction performing a cache maintenance operation on a location with Device
memory attributes is required to operate on all caches within the system, then the Manager must issue a cache
maintenance transaction as Normal Cacheable, Shareable, since this is the most pervasive of the cache
maintenance operations and operates on all the required caches.

A10.10.1 Unpredictable behavior with software cache maintenance

Cache maintenance can be used to reliably communicate shared memory data structures between a coherent group
of Managers and non-coherent agents. This process must follow a particular sequence to reliably make the data
structures visible as required.

When using cache maintenance to make the writes of a non-coherent agent visible to a coherent group of
Managers, there are periods of time when writing and reading the data structures gives UNPREDICTABLE results
and can cause a loss of coherency.

The observation of a line that is being updated by a non-coherent agent is UNPREDICTABLE during the period
between the clean transaction that starts the sequence and the invalidate transaction that completes it. During this
period, it is permissible to see multiple transitions of a cache line that is being updated by a non-coherent agent.

Coherent domain
access

1

Coherent domain
clean

2

Non-coherent
agent access

3

Coherent domain
invalidate

4

Coherent domain
access

5

Figure A10.3: Required sequence of communication between coherent and non-coherent domains

There are five stages of communication between a coherent domain and a non-coherent agent, shown in Figure
A10.3. The five-stage sequence is:

1. The coherent domain has access. The coherent domain has full read and write access to the appropriate
memory locations during this stage. This stage finishes when all required writes from the coherent domain
are complete within the coherent domain.

2. The coherent domain is cleaned. A cache clean operation is required for all the address locations that are
undergoing software cache maintenance during this stage. The coherent domain clean forces all previous
writes to be visible to the non-coherent agent. This stage finishes when all required writes are complete and
therefore visible to the non-coherent agent.

3. The non-coherent agent has access. The non-coherent agent has both read and write access to the defined
memory locations during this stage. This stage finishes when all required writes from the non-coherent agent
are complete.

4. The coherent domain is invalidated. A cache invalidate operation is required for all the address locations that
are undergoing software cache maintenance during this stage. This coherent domain invalidate stage removes
all cached copies of the defined locations ensuring that any subsequent access from the coherent domain
observes the writes from the non-coherent agent. This stage finishes when all the required invalidations are
complete.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

173

Chapter A10. Cache maintenance
A10.10. Processor cache maintenance instructions

5. The coherent domain has full access to the defined memory locations.

The following table shows when accesses from the coherent domain or the non-coherent agent are permitted. The
remaining accesses can have UNPREDICTABLE results, with possible loss of coherency.

Table A10.17: Permitted accesses from the Coherent domain and Non-coherent agent

Phase Description Coherent domain External agent

Read Write Read Write

1 Coherent domain access Permitted Permitted – –

2 Coherent domain clean – – – –

3 External agent access – – Permitted Permitted

4 Coherent domain invalidate – – – –

5 Coherent domain access Permitted Permitted – –

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

174

Chapter A11
Additional request qualifiers

This chapter describes some additional request qualifiers for the AXI protocol.

It contains the following sections:

• A11.1 Non-secure Access Identifiers (NSAID)

• A11.2 Page-based Hardware Attributes (PBHA)

• A11.3 Subsystem Identifier

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

175

Chapter A11. Additional request qualifiers
A11.1. Non-secure Access Identifiers (NSAID)

A11.1 Non-secure Access Identifiers (NSAID)

To support the storage and processing of protected data, a set of signals can be added that enable access to
particular Non-secure memory locations to be controlled. The signals supply a Non-secure Access Identifier
(NSAID) alongside the transaction request. The NSAID can be checked to permit or deny access to a memory
location.

The NSAccess_Identifiers property is used to indicate whether a component supports these additional signals.

Table A11.1: NSAccess_Identifiers property

NSAccess_Identifiers Default Description

True NSAID signaling is present on the interface.

False Y NSAID signaling is not present on the interface.

A11.1.1 NSAID signaling

If the NSAccess_Identifiers property is True, the following signals are added to the read and write request
channels.

Table A11.2: AxNSAID signals

Name Width Default Description

AWNSAID,
ARNSAID

4 0x0 Non-secure access identifier, can be checked to
permit or deny access to a memory location.

A 4-bit NSAID value supports up to 16 unique identifiers. For each NSAID, there is a set of access permission that
is defined which determine how locations in memory are permitted to be accessed. The access permissions can be:

• No access

• Read-only access

• Write-only access

• Read/write access

The mechanism that is used to define the access permissions for each NSAID is IMPLEMENTATION DEFINED.
However, this mechanism is typically implemented using some form of Memory Protection Unit (MPU).

The following rules and recommendations apply to NSAID values:

• Requests to Secure, Root, or Realm address spaces must use an NSAID value of zero.

• Requests to the Non-secure physical address space can use any NSAID value.

• It is permitted for transactions with different NSAID values to have access to overlapping memory locations.

• It is permitted for transactions with different NSAID values to have any combination of access permissions
for a given memory location.

• It is recommended that Managers use the default NSAID value of zero when accessing data that is not
protected, or when they do not have an assigned NSAID value.

• If a Manager is required to use a single NSAID value, then it is permitted for NSAID signals to be tied to a
fixed value.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

176

Chapter A11. Additional request qualifiers
A11.1. Non-secure Access Identifiers (NSAID)

A11.1.2 Caching and NSAID

Where caching and system coherency is performed upstream of permission checking, accesses with different
NSAID values that pass data between them must be subjected to permission checks.

The rules that are associated with NSAID use and coherency are as follows:

• When an agent caches a line of data that has been fetched using a particular NSAID value, it must ensure that
any subsequent write to main memory or any response to a snoop uses the same NSAID value. This rule
ensures that a Manager cannot move a cache line of data from one protected region to another.

• For a read request with a given NSAID value, if a snoop is used to obtain the data:

– If the NSAID value of the snoop response matches the read request, then data can be provided directly.

– If the NSAID value of the snoop response does not match the read request, then the cache line must first
be written to memory using the NSAID value obtained through the snoop response, and then read from
memory using the NSAID value of the original request. The write and subsequent read are only required
to reach a point at which permission checking has occurred.

• Snoop transactions that invalidate cached copies, such as MakeInvalid, must not be used if memory
protection is used. All such snoop transactions must be replaced with transactions that also clean the cache
line to main memory, such as CleanInvalid.

• Any interconnect-generated write to main memory that occurs as the result of a snoop must use the NSAID
value that is obtained from the snoop response.

• If a single Manager can issue transactions with multiple NSAID values, it must ensure that internal accesses
to cached copies use the NSAID value that was used to fetch the cache line initially:

– An access that has a cache line hit with the same address, but a different NSAID value, must clean and
invalidate the cache line before refetching the cache line with the appropriate NSAID value. This
process ensures that a protection check is performed.

– If it is guaranteed that the Manager never accesses the same cache line with a different NSAID value,
clean and invalidation operations are not necessary. This guarantee can be by design or be assured by
using appropriate cache maintenance operations.

• Appropriate cache maintenance must be performed when changing the access permissions for NSAID values.

It is permitted for a Manager to write to a cache line when that agent does not have write permission to the
location. It is also permitted for the updated cache line to be passed to other Managers using the same NSAID
value. However, it is not permitted for the update to propagate to main memory or to an access using a different
NSAID value.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

177

Chapter A11. Additional request qualifiers
A11.2. Page-based Hardware Attributes (PBHA)

A11.2 Page-based Hardware Attributes (PBHA)

Page-based hardware attributes (PBHA) are 4-bit descriptors associated with a translation table entry that can be
annotated onto a transaction request.

This specification describes how they can be transported but their use is IMPLEMENTATION DEFINED.

The following signals are used on the read and write request channels to transfer PBHA values.

Table A11.3: AxPBHA signals

Name Width Default Description

AWPBHA,
ARPBHA

4 - A 4b user-defined descriptor associated with a
translation table entry that can be annotated onto a
transaction request.

The PBHA_Support property is used to indicate whether an interface supports PBHA.

Table A11.4: PBHA_Support property

PBHA_Support Default Description

True PBHA is supported. AWPBHA and ARPBHA are present
on the interface.

False Y PBHA is not supported.

A11.2.1 PBHA values

PBHA values can be added to the request during address translation and propagated through a system if they are
supported by downstream components. At the MMU, all transactions to the same page and physical address space
are likely to have the same value but accuracy of PBHA values might be degraded as they pass through the system.

Examples of where PBHA values might become inaccurate are:

• When an interconnect is combining transactions from different sources, some might have PBHA values
attached, and others might take a fixed value.

• In a downstream cache, PBHA values might not be cached along with the data in all cases.

• In the case that PBHA values in translation tables are changed, values on in-flight transactions or cached data
could become inconsistent. Appropriate TLB Invalidate or cache maintenance operations could be used to
achieve a consistency.

This list is not exhaustive, designers are encouraged to document situations where PBHA can become inaccurate
within their component. A system integrator wanting to use PBHA must consider every component between the
source and target to determine the requirements of the target can be met.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

178

Chapter A11. Additional request qualifiers
A11.3. Subsystem Identifier

A11.3 Subsystem Identifier

The Subsystem Identifier (ID) is a field that can be added to transaction requests to indicate from which subsystem
they originate. The Subsystem ID can be used to qualify the transaction address and provide isolation between
parts of a system when they share memory or devices.

The signals used to transfer the Subsystem ID are shown in Table A11.5.

Table A11.5: AxSUBSYSID signals

Name Width Default Description

AWSUBSYSID,
ARSUBSYSID

SUBSYSID_WIDTH - Subsystem identifier that indicates from which
subsystem a request originates.

The SUBSYSID_WIDTH property is used to define the width and presence of the Subsystem ID signals. If the
property is zero, the signals are not present.

Name Values Default Description

SUBSYSID_WIDTH 0..8 0 Width of AWSUBSYSID and ARSUBSYSID in bits.

A11.3.1 Subsystem ID usage

This specification does not define the usage of Subsystem IDs.

Example implementations include:

• A Manager or group of Managers using a single Subsystem ID where they have common access rights to
shared memory or peripherals.

• An interconnect combining requests from Managers in different subsystems. In this case, the interconnect
Manager interface therefore uses different Subsystem IDs for different requests.

• Using the Subsystem ID as a look-up in a firewall or Memory Protection Unit (MPU) to isolate subsystems
for safety or security reasons.

• Requiring that all Managers within a coherent domain use the same Subsystem ID, so it can be used in snoop
filtering.

• Using Subsystem ID for performance profiling or monitoring.

• An interconnect that propagates Subsystem ID through some interfaces and not others.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

179

Chapter A12
Other write transactions

This chapter describes additional write transactions supported in the AXI protocol.

It contains the following sections:

• A12.1 WriteZero Transaction

• A12.2 WriteDeferrable Transaction

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

180

Chapter A12. Other write transactions
A12.1. WriteZero Transaction

A12.1 WriteZero Transaction

Many writes in a system, particularly from a CPU, have data set to zero. For example, while initializing or
allocating memory. These writes with a zero value consume write data bandwidth and interconnect power that can
be saved by using a data-less request.

The WriteZero transaction is used to write zero values to a cache line sized data location. The transaction consists
of a write request and write response but has no associated write data transfer. It is functionally equivalent to a
regular write to the same location with fully populated data lanes where all data has a value of zero.

The WriteZero_Transaction property is used to indicate whether an interface supports the WriteZero transaction.

Table A12.1: WriteZero_Transaction property

WriteZero_Transaction Default Description

True WriteZero is supported.

False Y WriteZero is not supported.

The rules for a WriteZero transaction are:

• A WriteZero request indicates that the data at the locations indicated by address, size, and length attributes
must be set to zero.

• A WriteZero transaction consists of a request on the AW channel and a single response on the B channel.

• A WriteZero transaction is cache line sized and Regular, see A4.1.8 Regular transactions

• AWSNOOP must be 0b0111 or 0b00111.

• AWLOCK must be 0b0, not exclusive access.

• AWTAGOP must be Invalid.

• AWID must be unique-in-flight, which means:

– A WriteZero transaction can only be issued if there are no outstanding write transactions using the same
AWID value.

– A Manager must not issue a request on the write channel with the same AWID as an outstanding
WriteZero transaction.

– If present, AWIDUNQ must be asserted for a WriteZero transaction.

• AWDOMAIN can take any value. If the Domain is Shareable, a WriteZero acts as a WriteUniqueFull with
zero as data.

• A Manager that issues WriteZero requests cannot be connected to a Subordinate that does not support
WriteZero.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

181

Chapter A12. Other write transactions
A12.2. WriteDeferrable Transaction

A12.2 WriteDeferrable Transaction

In enterprise systems, accelerators are commonly used that are accessed across chip-to-chip connections using a
64-byte atomic store operation. These store operations are performed to shared queues within the accelerator. In
some cases, it is possible that the store will not be accepted because the queue is full but might be accepted if
retried later. This type of transaction is known as a WriteDeferrable.

PCIe Gen5 includes support for a deferrable write through the Deferrable Memory Write (DMWr) transaction.
This requires a write response, so the DMWr is a non-posted Write. It is expected that a WriteDeferrable
transaction in AXI translates to a PCIe DMWr transaction.

A12.2.1 WriteDeferrable transaction support

The WriteDeferrable_Transaction property is used to indicate whether an interface supports the WriteDeferrable
transaction.

Table A12.2: WriteDeferrable_Transaction property

WriteDeferrable_Transaction Default Description

True WriteDeferrable is supported.

False Y WriteDeferrable is not supported.

A Manager that issues WriteDeferrable requests cannot be connected to a Subordinate that does not support
WriteDeferrable.

A12.2.2 WriteDeferrable signaling

When the WriteDeferrable_Transaction property is True, AWSNOOP and BRESP must be wide enough to
accommodate additional encodings:

• AWSNOOP_WIDTH must be 5.

• BRESP_WIDTH must be 3.

A WriteDeferrable transaction consists of a request, 64-bytes of write data and a write response.

The rules for a WriteDeferrable transaction are:

• AWSNOOP is 0b10000.

• AWDOMAIN is 0b11 (System shareable).

• AWCACHE is Device or Normal Non-cacheable.

• Legal combinations of Length x Size are:

– 1 x 64-bytes

– 2 x 32-bytes

– 4 x 16-bytes

– 8 x 8-bytes

– 16 x 4-bytes

• All bits of WSTRB must be set within the 64-byte container.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

182

Chapter A12. Other write transactions
A12.2. WriteDeferrable Transaction

• AWADDR is aligned to 64-bytes.

• AWBURST is INCR.

• AWLOCK is deasserted, not exclusive access.

• AWATOP is Non-atomic transaction.

• AWTAGOP is Invalid.

• The ID is unique-in-flight for all transactions, which means:

– A WriteDeferrable transaction can only be issued if there are no outstanding transactions on the write
channels with the same ID value.

– A Manager must not issue a request on the write channels with the same ID as an outstanding
WriteDeferrable transaction.

– If present, AWIDUNQ must be asserted for a WriteDeferrable transaction.

• A WriteDeferrable transaction must be treated as 64-byte atomic, therefore:

– It must only be to locations which have a single-copy atomicity size of 64-bytes or greater.

– The request must not be split or merged with other transactions.

A12.2.3 Response to a WriteDeferrable request

The following table shows the meanings for the response to a WriteDeferrable request.

BRESP[2:0] Response Indication

0b000 OKAY The write was accepted by a Subordinate that supports
WriteDeferrable transactions and was successful.

0b001 EXOKAY Not a permitted response to WriteDeferrable.

0b010 SLVERR Write has reached an end point but has been unsuccessful.

0b011 DECERR Write has not reached a point where data can be written.

0b100 DEFER Write was unsuccessful because it cannot be serviced at
this time but might be successful if resent later. The
location is not updated. This response is only permitted
for a WriteDeferrable transaction.

0b101 TRANSFAULT Write was terminated because of a translation fault which
might be resolved by a PRI request.

0b110 RESERVED –

0b111 UNSUPPORTED Write was unsuccessful because the transaction type is
not supported by the target. The location is not updated.
This response is only permitted for a WriteDeferrable
transaction.

If an interconnect detects that a WriteDeferrable is targeting a Subordinate that does not support WriteDeferrable
transactions, it must not propagate the request.

In this case, it is expected that an UNSUPPORTED response is sent, but SLVERR or DECERR are also permitted.

A Subordinate interface that can recognize a WriteDeferrable but cannot process it, has the
WriteDeferrable_Transaction property True but is expected to respond with UNSUPPORTED.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

183

Chapter A13
System monitoring, debug, and user extensions

This chapter describes the AXI features for system monitoring and debug. It also describes how to add
user-defined extensions to each channel.

It contains the following sections:

• A13.1 Memory System Resource Partitioning and Monitoring (MPAM)

• A13.2 Memory Tagging Extension (MTE)

• A13.3 Trace signals

• A13.4 User Loopback signaling

• A13.5 User defined signaling

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

184

Chapter A13. System monitoring, debug, and user extensions
A13.1. Memory System Resource Partitioning and Monitoring (MPAM)

A13.1 Memory System Resource Partitioning and Monitoring (MPAM)

Memory System Resource Partitioning and Monitoring (MPAM) is a technology for partitioning and monitoring
memory system resources for physical and virtual machines. The full MPAM architecture is described in the
Armv8.4 extensions [6].

Each MPAM-enabled Manager adds MPAM information to its requests. The MPAM information is propagated
through the system to memory components where it can be used to influence resource allocation decisions.
Monitoring memory usage based on MPAM information can also enable the tuning of performance and accurate
costing between machines.

A13.1.1 MPAM signaling

The MPAM_Support property as shown in Table A13.1 is used to indicate whether an interface supports MPAM.

Table A13.1: MPAM_Support property

MPAM_Support Default Description

MPAM_12_1 The interface is enabled for MPAM and includes the
MPAM signals on AW and AR channels. The width of
PARTID is 12 and PMG is 1.

MPAM_9_1 The interface is enabled for MPAM and includes the
MPAM signals on AW and AR channels. The width of
PARTID is 9 and PMG is 1.

False Y MPAM is not supported, the interface is not MPAM
enabled and no MPAM signals are present on the
interface.

The signals used to support MPAM are shown in Table A13.2.

Table A13.2: AxMPAM signals

Name Width Default Description

AWMPAM,
ARMPAM

MPAM_WIDTH - Memory System Resource Partitioning and
Monitoring (MPAM) information for a request.

The MPAM information has three fields. The mapping of bits to fields depends on whether RME is supported on
the interface. For more information on RME, see A5.5 Memory protection and the Realm Management Extension.

The value of MPAM_WIDTH is determined by the MPAM_Support and RME_Support properties.

When MPAM_Support is False, MPAM_WIDTH must be zero.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

185

Chapter A13. System monitoring, debug, and user extensions
A13.1. Memory System Resource Partitioning and Monitoring (MPAM)

A13.1.2 MPAM fields

MPAM fields are encoded within the AxMPAM signals depending on the MPAM_Support and RME_Support
properties.

When MPAM_Support is MPAM_9_1 and RME_Support is False, MPAM_WIDTH must be 11 and the mapping
is shown in Table A13.3.

Table A13.3: MPAM_9_1 fields when RME_Support is False

Field Description Width Mapping

MPAM_NS Security indicator 1 AxMPAM[0]

PARTID Partition identifier 9 AxMPAM[9:1]

PMG Performance monitor group 1 AxMPAM[10]

When MPAM_Support is MPAM_9_1 and RME_Support is True, MPAM_WIDTH must be 12 and the mapping is
shown in Table A13.4.

Table A13.4: MPAM_9_1 fields when RME_Support is True

Field Description Width Mapping

MPAM_SP Physical address space indicator 2 AxMPAM[1:0]

PARTID Partition identifier 9 AxMPAM[10:2]

PMG Performance monitor group 1 AxMPAM[11]

When MPAM_Support is MPAM_12_1 and RME_Support is False, MPAM_WIDTH must be 14 and the mapping
is shown in Table A13.5.

Table A13.5: MPAM_12_1 fields when RME_Support is False

Field Description Width Mapping

MPAM_NS Security indicator 1 AxMPAM[0]

PARTID Partition identifier 12 AxMPAM[12:1]

PMG Performance monitor group 1 AxMPAM[13]

When MPAM_Support is MPAM_12_1 and RME_Support is True, MPAM_WIDTH must be 15 and the mapping
is shown in Table A13.6.

Table A13.6: MPAM_12_1 fields when RME_Support is True

Field Description Width Mapping

MPAM_SP Physical address space indicator 2 AxMPAM[1:0]

PARTID Partition identifier 12 AxMPAM[13:2]

PMG Performance monitor group 1 AxMPAM[14]

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

186

Chapter A13. System monitoring, debug, and user extensions
A13.1. Memory System Resource Partitioning and Monitoring (MPAM)

A13.1.3 MPAM component interactions

Implementation of MPAM technology has impacts on Manager, Interconnect, and Subordinate components.

If a Manager component is included in an MPAM-enabled system, but does not support MPAM signaling, then the
system must add the MPAM information. The default is IMPLEMENTATION DEFINED, but one option is to copy
the physical address space (AxNSE, AxPROT[1]) of the request onto the least significant MPAM bits and
zero-extend the higher bits.

Manager components

Manager components that are MPAM-enabled must drive MPAM signals when the corresponding AxVALID is
asserted. Values used are IMPLEMENTATION DEFINED for all transaction types. It is expected, but not required,
that a Manager uses the same sets of values for read and write requests. A Manager might not use all the PARTID
or PMG values that can be signaled on the interface.

Interconnect components

MPAM identifiers have global scope. There is no requirement for interconnect components to make MPAM
identifiers unique. When an interconnect Manager interface is connected to an MPAM-enabled Subordinate, it can
use propagated values or IMPLEMENTATION DEFINED values.

Subordinate components

A Subordinate component that is MPAM-enabled can use the MPAM information for memory partitioning and
monitoring. MPAM signals are sampled when the corresponding AxVALID is asserted.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

187

Chapter A13. System monitoring, debug, and user extensions
A13.2. Memory Tagging Extension (MTE)

A13.2 Memory Tagging Extension (MTE)

The Memory Tagging Extension (MTE) provides a mechanism that can be used to detect memory safety violations.

When a region of memory is allocated for a particular use, it is given an Allocation Tag value. When the memory
is subsequently accessed, a Physical Tag value is provided that corresponds to the physical address of the access. If
the Physical Tag does not match with the Allocation Tag, a warning is generated.

Allocation Tags are stored in the memory system and can be cached in the same way as data. Each tag is 4 bits and
is associated with a 16-byte aligned address location.

The following operations are supported:

• Updating the Allocation Tag value using a write transaction, with or without updating the associated data
value.

• Reading of data with associated Allocation tag. The Requestor can then perform the check of Physical Tag
against the Allocation Tag.

• Writing to memory with a Physical Tag to be compared with the Allocation Tag. The result is indicated in
the transaction response.

When memory tagging is supported in a system, it is not required that every transaction uses memory tagging. It is
also not required that every component in the system supports memory tagging.

The Memory Tagging Extension is supported on Arm A-profile architecture v8.5 onwards and is described in the
Arm® Architecture Reference Manual for A-profile architecture [3].

A13.2.1 MTE support

The MTE_Support property of an interface is used to indicate the level of support for MTE. There are different
levels of support that can be used, depending on the use-case.

Table A13.7: MTE_Support property

MTE_Support Default Description

Standard Memory tagging is fully supported on the interface, all MTE signals
are present.

Simplified Memory tagging is supported except the MTE Match operation.
Partial tag writes are not permitted, so when AWTAGOP is Update,
all WTAGUPDATE bits that correspond to the tags inside the
transaction container must be asserted. BTAGMATCH is not present.
BCOMP is not required.

Basic Memory tagging is supported on the interface at a basic level. A
limited set of tag operations are permitted. BTAGMATCH is not
present. BCOMP is not required.

False Y Memory tagging is not supported on the interface and no MTE
signals are present.

Note that MTE_Support must be False on interfaces with a data width smaller than 32 bits.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

188

Chapter A13. System monitoring, debug, and user extensions
A13.2. Memory Tagging Extension (MTE)

The compatibility between Manager and Subordinate interfaces, according to the values of the MTE_Support
property is shown in Table A13.8.

Table A13.8: MTE_Support

Subordinate: False Subordinate:
Basic

Subordinate:
Simplified

Subordinate:
Standard

Manager:
False

Compatible. Compatible. Compatible. Compatible.

Manager:
Basic

Protocol compliant.
The Subordinate ignores
AxTAGOP, so write tags are
lost and read tag values are
static.

Compatible. Compatible. Compatible.

Manager:
Simplified

Protocol compliant.
The Subordinate ignores
AxTAGOP, so write tags are
lost and read tag values are
static.

Not compatible. Compatible. Compatible.

Manager:
Standard

Not compatible. Not compatible. Not compatible. Compatible.

A13.2.2 MTE signaling

The signals required to support MTE are shown in Table A13.9.

Table A13.9: MTE signals

Name Width Default Description

AWTAGOP 2 0b00
(Invalid)

Indicates if MTE tags are associated with a write
transaction.

ARTAGOP 2 0b00
(Invalid)

Indicates if MTE tags are requested with a read
transaction.

WTAG,
RTAG

ceil(DATA_WIDTH/128)*4 - Memory tag associated with data. There is a 4-bit tag per
128-bits of data, with a minimum of 4-bits. Has the same
validity rules as the associated data. It is recommended
that invalid tags are driven to zero.

WTAGUPDATE ceil(DATA_WIDTH/128) - Indicates which tags must be written to memory when
AWTAGOP is Update. There is 1 bit per 4 bits of tag.

BTAGMATCH 2 - Indicates the result of a tag comparison on a write
transaction.

BCOMP 1 0b1 Asserted HIGH to indicate a Completion response.

A13.2.3 Caching tags

Allocation Tags that are cached must be kept hardware-coherent. The coherence mechanism is the same as for
data. Applicable tag cache states are: Invalid, Clean, and Dirty. A line that is either Clean or Dirty is Valid.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

189

Chapter A13. System monitoring, debug, and user extensions
A13.2. Memory Tagging Extension (MTE)

Constraints on the combination of data cache state and tag cache state are:

• Tags can be Valid only when data is Valid.

• Tags can be Invalid when data is Valid.

• When a cached line is evicted and tags are Dirty, then it is permitted to treat clean data that is evicted as dirty.

• When Dirty tags are evicted from a cache, they must be either written back to memory or passed dirty to
another cache.

• When Clean tags are evicted from a cache, they can be sent to other caches or dropped silently.

• A CMO which hits a line with Valid tags applies to the data and the tag.

• When a MakeInvalid or ROMI transaction hits a line with dirty tags, the tags must be written back to
memory.

A13.2.4 Transporting tags

Tag values are transported using the WTAG signal when AWTAGOP is not Invalid.

Tag values are transported using the RTAG signal when ARTAGOP is not Invalid.

When transporting tags, the following rules apply in addition to other constraints based on the transaction type:

• The transaction must be cache-line-sized or smaller and not cross a cache line boundary.

• AxBURST must be INCR or WRAP, not FIXED.

• The transaction must be to Normal Write-Back memory, which means:

– The CACHE_Present property must be True.

– AxCACHE[3:2] is not 0b00.

– AxCACHE[1:0] is 0b11.

• The ID value must be unique-in-flight, which means:

– A read with tag Transfer or Fetch can only be issued if there are no outstanding read transactions using
the same ARID value.

– A Manager must not issue a request on the read channel with the same ARID as an outstanding read
with tag Transfer or Fetch.

– If present, ARIDUNQ must be asserted for a read with tag Transfer or Fetch.

– A write with tag Transfer, Update or Match can only be issued if there are no outstanding write
transactions using the same AWID value.

– A Manager must not issue a request on the write channel with the same AWID as an outstanding write
with tag Transfer, Update, or Match.

– If present, AWIDUNQ must be asserted for a write with tag operations Transfer, Update, or Match.

• The memory tag is transported on RTAG or WTAG, where TAG[4n-1:4(n-1)] corresponds to
DATA[128n-1:128(n-1)].

• For data widths wider than 128 bits, the tag signal carries multiple tags. The tags are driven appropriate to
the data being transported, with the least significant tag bits used to transport the tag for the least significant
128 bits of data.

• For read transactions that use read data chunking, only tags which correspond to valid chunk strobes are
required to be valid.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

190

Chapter A13. System monitoring, debug, and user extensions
A13.2. Memory Tagging Extension (MTE)

• For write transactions where multiple transfers address the same tag, WTAG and WTAGUPDATE values
must be consistent for each 4-bit tag that is accessed by the transaction.

A13.2.5 Reads with tags

A read can request that Allocation Tags are returned along with data, which is determined by the value of
ARTAGOP, as shown in Table A13.10.

Table A13.10: ARTAGOP encodings

ARTAGOP Operation Meaning

0b00 Invalid Tags are not required to be returned with the data. In the response to this
request, RTAG is invalid and must be zero.

0b01 Transfer Each transfer of read data must have a valid tag value. Tags must be sent for
every 16-byte granule that is accessed, even if the address is not aligned to 16
bytes.

0b10 RESERVED -

0b11 Fetch Only tags are required to be fetched. Data is not required to be valid and must
not be used by the Manager. Transactions using Fetch must be cache line sized
and Regular. Tags must be sent for every 16-byte granule that is accessed.

There are limitations on which read channel Opcodes can be used with MTE tag transfer. Table A13.11 shows the
combinations of Opcode and TagOp that are legal for each configuration of MTE_Support.

A TagOp encoding of Invalid is legal for all Opcodes.

An asterisk (*) indicates all variants of the Opcode.

Table A13.11: Legal tag operations for read transactions

Opcode
MTE_Support = Basic MTE_Support = Simplified MTE_Support = Standard

Transfer Fetch Transfer Fetch Transfer Fetch

ReadNoSnoop Y - Y Y Y Y

ReadOnce Y - Y - Y -

ReadShared Y - Y - Y -

ReadClean Y - Y - Y -

ReadOnceCleanInvalid - - - - - -

ReadOnceMakeInvalid - - - - - -

CleanInvalid* - - - - - -

CleanShared* - - - - - -

MakeInvalid - - - - - -

DVM Complete - - - - - -

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

191

Chapter A13. System monitoring, debug, and user extensions
A13.2. Memory Tagging Extension (MTE)

A13.2.6 Writes with tags

A write can request that Allocation Tags are written along with data or that the write includes a Physical Tag which
is compared with the Allocation Tag already stored in memory. The signal AWTAGOP indicates the tag operation
to be performed.

Table A13.12: AWTAGOP encodings

AWTAGOP Operation Meaning

0b00 Invalid The tags are not valid; no tag updating or checking is required.
WTAGUPDATE must be deasserted.
WTAG must be zero.

0b01 Transfer The tags are Clean. Tag check does not need to be performed. The completer of
the write can cache the tags if it is allocating the data.
WTAGUPDATE must be deasserted.
WTAG bits must be valid for every byte in the transaction container.

0b10 Update Tag values have been updated and are dirty; the tags in memory must be
updated, according to WTAGUPDATE.
WTAGUPDATE can have any number of bits asserted, including none.
Tags that are only partially addressed in the transaction must have
WTAGUPDATE deasserted.
Write*Full* Opcodes must have all associated WTAGUPDATE bits asserted.
WTAG must be valid for every associated WTAGUPDATE bit that is asserted.

0b11 Match The tags in the write must be checked against the Allocation Tag values that are
obtained from memory. The Match operation must be performed for all tags
where any corresponding write data strobes are asserted. It is required to update
memory with the data, even if the match fails.
WTAGUPDATE must be deasserted.
WTAG bits must be valid for byte lanes that are enabled by WSTRB.
For interfaces with more than 4 bits of tags, the Match operation is performed
only on those tags that correspond to active byte lanes.

For a write with tag Update, WTAGUPDATE indicates which tags must be written. It has the following rules:

• WTAGUPDATE[n] corresponds to WTAG[4n+3:4n].

• If a bit is asserted, then the corresponding tags must be written to memory.

• If a bit is deasserted, then the corresponding tags are invalid.

• WTAGUPDATE bits outside of the transaction container must be deasserted.

• For operations other than Update, WTAGUPDATE must be deasserted.

• A tag-only write can be achieved by asserting WTAGUPDATE and deasserting WSTRB.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

192

Chapter A13. System monitoring, debug, and user extensions
A13.2. Memory Tagging Extension (MTE)

There are limitations on which write channel Opcodes can be used with MTE tag transfer. Table A13.13 shows the
combinations of Opcode and TagOp that are legal for each configuration of MTE_Support.

A TagOp encoding of Invalid is legal for all Opcodes.

An asterisk (*) indicates all variants of the Opcode.

Table A13.13: Legal tag operations for write transactions

Opcode
MTE_Support = Basic MTE_Support = Simplified MTE_Support = Standard

Transfer Update Match Transfer Update1 Match Transfer Update Match

WriteNoSnoop - Y - - Y - Y Y Y2

WriteUnique* - Y - - Y - - Y -

WriteNoSnoopFull - Y - Y Y - Y Y Y

WriteBackFull - Y - Y Y - Y Y -

WriteEvictFull Y - - Y - - Y - -

Atomic - - - - - - - - Y

CMO - - - - - - - - -

Write*CMO - - - Y3 Y - Y3 Y -

WriteZero - - - - - - - - -

WriteUnique*Stash - - - - - - - - -

StashOnce* - - - - - - - - -

StashTranslation - - - - - - - - -

Prefetch - - - Y - - Y - -

WriteDeferrable - - - - - - - - -

UnstashTranslation - - - - - - - - -

InvalidateHint - - - - - - - - -

1 Partial tag updates are not supported.
2 Not Exclusive write.
3 Domain must be Non-shareable.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

193

Chapter A13. System monitoring, debug, and user extensions
A13.2. Memory Tagging Extension (MTE)

Write transactions with a tag Match operation (AWTAGOP is 0b11) have two parts to the response:

• A Completion response, which indicates that the write is observable.

• A Match response, which indicates whether the tag comparison passes or fails.

A two-part response enables components with separate data and tag storage parts to respond independently.

Response transfers can be sent in any order. The two parts can be optionally combined into a single response
transfer.

The responses are signaled using BCOMP and BTAGMATCH. Table A13.14 shows the encodings for
BTAGMATCH.

Table A13.14: BTAGMATCH encodings

BTAGMATCH Operation Meaning

0b00 None No match result because not a match transaction

0b01 Separate Match result is in a separate response transfer

0b10 Fail Tags do not match

0b11 Pass Tags match

Completion response

The Completion response indicates that the write is observable. It has the following rules:

• BCOMP must be asserted.

• BTAGMATCH must be 0b01 (Match result in separate response).

• BID must have the same value as AWID.

• If Loopback signaling is supported, BLOOP must have the same value as AWLOOP.

• BRESP can take any value that is legal for the request Opcode.

• The Completion response must follow normal response ordering rules.

• The ID value can be reused when this response is received.

Match response

The Match response indicates the result of the tag comparison on a write.

• If the tags match for every transfer of the entire transaction, then the response is Pass.

• If any tags associated with active write data byte lanes do not match those already stored, then the response is
Fail.

A Match response has the following rules:

• BCOMP must be deasserted.

• BTAGMATCH must be 0b11 (Pass) or 0b10 (Fail).

• BID must have the same value as AWID.

• BIDUNQ can take any value, it is not required to have the same value as AWIDUNQ.

• BLOOP can take any value, it is not required to have the same value as AWLOOP.

• BRESP can take any value that is legal for the request Opcode.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

194

Chapter A13. System monitoring, debug, and user extensions
A13.2. Memory Tagging Extension (MTE)

• The Match response has no ordering requirements, it can overtake or be overtaken by any other response
transfers.

Combined response

A Subordinate can optionally combine the two responses into a single transfer. The following rules apply:

• BCOMP must be asserted.

• BTAGMATCH must be 0b11 (Pass) or 0b10 (Fail).

• BID must have the same value as AWID.

• If Loopback signaling is supported, BLOOP must have the same value as AWLOOP.

• BRESP can take any value that is legal for the request Opcode.

• The combined response must follow normal response ordering rules.

• The ID value can be reused when this response is received.

Possible responses to a Match operation are shown in Table A13.15.

Table A13.15: Possible responses to a Match operation

BTAGMATCH BCOMP Description

0b00 0b0 Not legal for a response to a request with tag Match.

0b00 0b1 Not legal for a response to a request with tag Match.

0b01 0b0 Not legal.

0b01 0b1 Completion response, part of a two-part response.

0b10 0b0 Match Fail, part of a two-part response.

0b10 0b1 Match Fail or MTE Match not supported, one-part response.

0b11 0b0 Match Pass, part of a two-part response.

0b11 0b1 Match Pass, one-part response.

A13.2.7 Memory tagging interoperability

When an MTE operation is performed to a memory location that does not support memory tagging, the resultant
data must be the same as if a non-MTE operation was performed to that location.

• For a read with Transfer or Fetch, RTAG is recommended to be zero.

• For a write with Transfer or Update, the data must be written normally. The tag is discarded.

• For a write with Match, the data must be written normally and a single Combined response is given.
BTAGMATCH must be 0b10 (Fail).

A Subordinate is expected to give an OKAY response to an MTE operation unless it would have given a different
response to an equivalent non-MTE operation.

A13.2.8 MTE and Atomic transactions

An Atomic transaction to a location that is protected with memory tagging can use a write Match operation.
Atomic transactions cannot be used with Transfer or Update operations.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

195

Chapter A13. System monitoring, debug, and user extensions
A13.2. Memory Tagging Extension (MTE)

AtomicCompare transactions with Match can be 16 bytes or 32 bytes. If the transaction is 32 bytes, the same tag
value must be used for tag bits associated with the compare and swap bytes.

Read data that is returned within an Atomic Transaction does not have valid RTAG values, so RTAG is
recommended to be zero.

A13.2.9 MTE and Prefetch transactions

A Prefetch transaction with AWTAGOP of Transfer indicates that the data should be prefetched with tags if
possible. A Prefetch transaction has no write data, so no tag Transfer operation occurs within the transaction.

A13.2.10 MTE and Poison

Section A17.1 Data protection using Poison discusses the concept of Poison associated with read and write data.
There is no poison signaling directly associated with Allocation Tags. When writing a tag with poisoned data, the
stored tag might be marked as poisoned.

The exact mechanism for this is IMPLEMENTATION DEFINED. Implementations might choose to do one of the
following, but other implementations are possible.

• Poison associated with the data results in the tag being poisoned. Depending on the granularity of the poison
associated with the tag, it may not be possible to clear the poison using the same techniques that would be
used to clear poison associated with data.

• Poison associated with the data does not result in the tag being poisoned. This means that a corrupted tag
might subsequently be used in an MTE Match operation, which could incorrectly fail. The rate at which this
occurs should be significantly lower than the rate at which data corruption occurs.

• A mixture of approaches can be used, depending on the caching or storage structures that are used.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

196

Chapter A13. System monitoring, debug, and user extensions
A13.3. Trace signals

A13.3 Trace signals

An optional Trace signal can be associated with each channel to support the debugging, tracing, and performance
measurement of systems.

The Trace_Signals property is used to indicate whether a component supports Trace signals.

Table A13.16: Trace_Signals property

Trace_Signals Default Description

True Trace signals are included on all channels.

False Y Trace signals are not present.

The Trace signals associated with each channel are shown in Table A13.17. If the Trace_Signals property is True,
then the appropriate Trace signal must be present for all channels that are present.

Table A13.17: Trace signals

Name Width Default Description

AWTRACE 1 - Trace signal associated with the write request channel.

WTRACE 1 - Trace signal associated with the write data channel.

BTRACE 1 - Trace signal associated with the write response channel.

ARTRACE 1 - Trace signal associated with the read request channel.

RTRACE 1 - Trace signal associated with the read data channel.

The exact use for Trace signals is not detailed in this specification, but it is expected that the use of Trace signaling
is coordinated across the system and only one use of the Trace signaling occurs at a given time. Trace signal
behavior is IMPLEMENTATION DEFINED, but the following recommendations are given:

• A Manager interface can assert the Trace signal along with the address of a transaction that should be tracked
through the system.

• A component that provides a response to a transaction with the Trace signal asserted in the request provides a
response with the Trace signal asserted.

• Components that pass-through transactions, preserve the Trace attribute of requests and responses.

• If a downstream component does not support Trace signals, an interconnect can assert Trace on the
appropriate transfers.

• A Subordinate that receives a request with AWTRACE asserted should assert the BTRACE signal
alongside the response.

• If an interface includes BCOMP, then BTRACE can take any value for responses with BCOMP deasserted.

• WTRACE should be propagated through interconnect components.

• A Subordinate that receives a request with the ARTRACE signal asserted should assert the RTRACE signal
alongside every transfer of the read response.

• For Atomic transactions that require a response on the read channel, the RTRACE signal should be asserted
if AWTRACE was asserted.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

197

Chapter A13. System monitoring, debug, and user extensions
A13.4. User Loopback signaling

A13.4 User Loopback signaling

User Loopback signaling permits an agent that is issuing requests to store information that is related to the
transaction in an indexed table.

The transaction response can then use a fast table index to obtain the required information, rather than requiring a
more complex lookup that uses the transaction ID.

The Loopback_Signals property is used to indicate whether a component supports Loopback signals.

Table A13.18: Loopback_Signals property

Loopback_Signals Default Description

True Loopback signaling is supported.

False Y Loopback signaling is not supported.

The Loopback signals associated with each channel are shown in Table A13.19. If the Loopback_Signals property
is True, the appropriate Loopback signals must be present for all channels.

Table A13.19: Loopback signals

Name Width Default Description

AWLOOP,
BLOOP

LOOP_W_WIDTH All zeros A user-defined value that must be reflected from a
write request to response transfers.

ARLOOP,
RLOOP

LOOP_R_WIDTH All zeros A user-defined value that must be reflected from a
read request to response and data transfers.

The width of the Loopback signals is determined by the properties shown in Table A13.20. The maximum width is
a recommendation.

Table A13.20: Loopback signal width properties

Name Values Default Description

LOOP_W_WIDTH 0..8 - Loop signal width on write channels in bits,
applies to AWLOOP and BLOOP.

LOOP_R_WIDTH 0..8 - Loop signal width on read channels in bits, applies
to ARLOOP and RLOOP.

The rules for the Loopback width properties are:

• If LOOP_W_WIDTH is 0, AWLOOP and BLOOP are not present.

• If LOOP_R_WIDTH is 0, ARLOOP and RLOOP are not present.

• If Loopback_Signals is False, LOOP_R_WIDTH and LOOP_W_WIDTH must be 0.

The usage rules are:

• The value of BLOOP must be identical to the value that was on AWLOOP.

• If an interface includes BCOMP, then BLOOP can take any value for responses with BCOMP deasserted.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

198

Chapter A13. System monitoring, debug, and user extensions
A13.4. User Loopback signaling

• The value of RLOOP must be identical to the value that was on ARLOOP for all read data transfers.

• For Atomic transactions that require a response on the read channel, the value of RLOOP must be identical
to the value that was presented on AWLOOP. This means that the Manager must use loop values that can be
signaled on both AWLOOP and RLOOP.

Loopback values are not required to be unique. Multiple outstanding transactions from the same Manager are
permitted to use the same value.

It is not required that the Loopback value is preserved as a transaction progresses through a system. An
intermediate component is permitted to store the Loopback value of a request it receives and use its own value for
a request that it propagates downstream. When the component receives a response to the downstream transaction,
it can retrieve the Loopback value for the original transaction.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

199

Chapter A13. System monitoring, debug, and user extensions
A13.5. User defined signaling

A13.5 User defined signaling

An AXI interface can include a set of user-defined signals, called User signals. The signals can be used to augment
information to a transaction, where there is a requirement that is not covered by the existing AMBA specification.

Information can be added to:

• A transaction request

• A transaction response

• Each transfer of read or write data within a transaction

Generally, it is recommended to avoid using User signals. The AXI protocol does not define the functions of these
signals, which can lead to interoperability issues if two components use the same User signals in an incompatible
manner.

A13.5.1 Configuration

The presence and width of User signals is specified by the properties in Table A13.21:

Table A13.21: User signal properties

Name Values Default Description

USER_REQ_WIDTH 0..128 0 Width of user extensions to a request in
bits, applies to AWUSER and ARUSER.

USER_DATA_WIDTH 0..DATA_WIDTH/2 0 Width of user extensions to data in bits,
applies to WUSER and RUSER.

USER_RESP_WIDTH 0..16 0 Width of user extensions to responses in
bits, applies to BUSER and RUSER.

If a property has a value of zero, then the associated signals are not present on the interface.

The maximum signal widths are for guidance only, to set a reasonable maximum for configurable interfaces.

A13.5.2 User signals

The user signals that can be added to each channel are shown in Table A13.22.

Table A13.22: User signals

Name Width Default Description

AWUSER,
ARUSER

USER_REQ_WIDTH All zeros User-defined extension to a request.

WUSER USER_DATA_WIDTH All zeros User-defined extension to write data.

BUSER USER_RESP_WIDTH All zeros User-defined extension to a write response.

RUSER USER_DATA_WIDTH +
USER_RESP_WIDTH

All zeros User-defined extension to read data and
response.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

200

Chapter A13. System monitoring, debug, and user extensions
A13.5. User defined signaling

A13.5.3 Usage considerations

Where User signals are implemented:

• It is not required that User signals are supported on all channels.

• The design decision regarding presence and width of User signals is made independently for request, data,
and response channels.

• It is not required that values on request User signals are reflected on response User signals.

To assist with data width and protocol conversion, it is recommended that:

• USER_DATA_WIDTH is an integer multiple of the width of the data channels in bytes.

• User response bits are the same value for every transfer of a read or write response.

• The lower bits of RUSER are used to transport per-transaction response information.

• The upper bits of RUSER are used to transport per-transfer read data information.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

201

Chapter A14
Untranslated Transactions

This chapter describes how AXI supports the use of virtual addresses and translation stash hints for components
upstream of a System Memory Management Unit (SMMU). It contains the following sections:

• A14.1 Introduction to Distributed Virtual Memory

• A14.2 Support for untranslated transactions

• A14.3 Untranslated transaction signaling

• A14.4 Translation identifiers

• A14.5 Translation fault flows

• A14.6 Untranslated transaction qualifier

• A14.7 StashTranslation Opcode

• A14.8 UnstashTranslation Opcode

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

202

Chapter A14. Untranslated Transactions
A14.1. Introduction to Distributed Virtual Memory

A14.1 Introduction to Distributed Virtual Memory

An example system using Distributed Virtual Memory (DVM) is shown in Figure A14.1.

Interconnect

Manager 1 Manager 2

System
MMU TLB TLB

Memory

Translation tables

Memory

Processor

TLB

MMU

Processor

TLB

MMU

virtual
address

physical
address

System
MMU

CHI CHI
AXI with DVM

messages
AXI with DVM

messages

AXI with

Untranslated

Transactions

AXI with

Untranslated

Transactions

AXI AXI

Figure A14.1: Virtual memory system

In Figure A14.1, the System Memory Management Units (SMMUs) translate addresses in the virtual address
space to addresses in the physical address space. Although all components in the system must use a single physical
address space, SMMU components enable different Manager components to operate in their own independent
virtual address or intermediate physical address space.

A typical process in the virtual memory system shown in Figure A14.1 might operate as follows:

1. A Manager component operating in a virtual address (VA) space issues a transaction that uses a VA.

2. The SMMU receives the VA for translation to a physical address (PA):

• If the SMMU has recently performed the requested translation, then it might obtain a cached copy of the
translation from its TLB.

• Otherwise, the SMMU must perform a translation table walk, accessing translation table in memory to
obtain the required VA to PA translation.

3. The SMMU uses the PA to issue the transaction for the requesting component.

At step 2 of this process, the translation for the required VA might not exist. In this case, the translation table walk
generates a fault, that must be notified to the agent that maintains the translation tables. For the required access to
proceed, that agent must then provide the required VA to PA translation. Typically, it updates the translation tables
with the required information.

Maintaining the translation tables can require changes to translation table entries that are cached in TLBs. To
prevent the use of these entries, a DVM message can be used to issue a TLB invalidate operation.

When the translation tables have been updated, and the required TLB invalidations performed, a DVM Sync
transaction is used to ensure that all required transactions have completed.

Details of DVM messages used to maintain SMMUs can be found in Chapter A15 Distributed Virtual Memory
messages.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

203

Chapter A14. Untranslated Transactions
A14.2. Support for untranslated transactions

A14.2 Support for untranslated transactions

AXI supports the use of virtual addresses through the untranslated transactions extension. The specification for
untranslated transactions has developed over time and there are currently three different versions. It is
recommended that new designs using virtual memory use version 3 of the specification.

The Untranslated_Transactions property is used to indicate which version of untranslated transactions is supported
by an interface.

Table A14.1: Untranslated_Transactions property

Untranslated_Transactions Default Description

v3 Untranslated transactions version 3 is supported.

v2 Untranslated transactions version 2 is supported.

v1 Untranslated transactions version 1 is supported.

True Untranslated transactions version 1 is supported.

False Y Untranslated transactions are not supported.

Address translation is the process of translating an input address to an output address based on address mapping
and memory attribute information that is held in translation tables. This process permits agents in the system to
use their own virtual address space, but ensures that the addresses for all transactions are eventually translated to a
single physical address space for the entire system.

The use of a single physical address space is required for the correct operation of hardware coherency and
therefore the SMMU functionality is typically located before a coherent interconnect.

The additional signals that are specified in this section provide sufficient information for an SMMU to determine
the translation that is required for a particular transaction and permit different transactions on the same interface to
use different translation schemes.

All signals in the Untranslated Transactions extension are prefixed with AWMMU for write transactions and
ARMMU for read transactions.

In this specification, AxMMU indicates AWMMU or ARMMU.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

204

Chapter A14. Untranslated Transactions
A14.3. Untranslated transaction signaling

A14.3 Untranslated transaction signaling

The signals to support untranslated transactions are shown in Table A14.2. Each signal is described in following
sections, including the property values which determine whether they are present.

Table A14.2: Signals for Untranslated Transactions

Name Width Default Description

AWMMUSECSID,
ARMMUSECSID

SECSID_WIDTH 0b00
(Non-secure)

Secure Stream Identifier for untranslated
transactions.

AWMMUSID,
ARMMUSID

SID_WIDTH All zeros Stream Identifier for untranslated transactions.

AWMMUSSIDV,
ARMMUSSIDV

1 0b0 Asserted HIGH to indicate that a transaction has a
valid substream identifier.

AWMMUSSID,
ARMMUSSID

SSID_WIDTH All zeros Substream identifier for untranslated transactions.

AWMMUATST,
ARMMUATST

1 0b0 Indicates that the transaction has already
undergone PCIe ATS translation.

AWMMUFLOW,
ARMMUFLOW

2 0b00
(Stall)

Indicates the SMMU flow for managing
translation faults for this transaction.

AWMMUVALID,
ARMMUVALID

1 0b0 MMU qualifier signal. When deasserted, the
transaction address is a physical address and does
not require translation.

When Untranslated_Transactions is v2 or v3, RRESP and BRESP are extended to 3-bits to accommodate the
signaling of the TRANSFAULT response. See A4.3 Transaction response for encodings.

In Table A14.3 there is a summary of which MMU signals are present for which version of untranslated
transactions.

• ‘Y’ indicates that the signal is mandatory.

• ‘C’ indicates that the presence is configurable.

• ‘-’ indicates that the signal must not be present.

Table A14.3: Signals in each version of untranslated transactions

Signals Version 1 Version 2 Version 3

AxMMUSECSID Y Y Y

AxMMUSID C C C

AxMMUSSIDV C C C

AxMMUSSID C C C

AxMMUATST C - -

AxMMUFLOW - C C

AxMMUVALID - - Y

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

205

Chapter A14. Untranslated Transactions
A14.4. Translation identifiers

A14.4 Translation identifiers

Requests using virtual addressing can have up to three identifiers that are used during address translation:

• Secure Stream Identifier A14.4.1 Secure Stream Identifier (SECSID)

• Stream Identifier A14.4.2 StreamID (SID)

• Substream Identifier A14.4.3 SubstreamID (SSID)

During the building of a system, it is possible that the stream identifiers for a given component have some ID bits
provided by the component and some ID bits that are tied off for that component. This fixes the range of values in
the stream identifier name space that can be used by that component. Typically, the low-order bits are provided by
the component and the high-order bits are tied off.

Any additional identifier field bits for AxMMUSID or AxMMUSSID, that are not supplied by the component or
hard-coded by the interconnect, must be tied LOW.

A14.4.1 Secure Stream Identifier (SECSID)

The Secure Stream Identifier is used to indicate the virtual address space of the request. It is transported using the
AxMMUSECSID signal, Table A14.4 shows the encodings.

Table A14.4: AxMMUSECSID encodings

AxMMUSECSID Label Meaning

0b00 Non-secure Non-secure address space

0b01 Secure Secure address space

0b10 Realm Realm address space

0b11 RESERVED -

The width of AxMMUSECSID is determined by the property SECSID_WIDTH.

Table A14.5: SECSID_WIDTH property

Name Values Default Description

SECSID_WIDTH 0, 1, 2 0 Width of AWMMUSECSID and
ARMMUSECSID in bits.

The following rules apply:

• SECSID_WIDTH must be 0 when Untranslated_Transactions is False. AxMMUSECSID signals are not
present.

• SECSID_WIDTH must be 1 when Untranslated_Transactions is not False and RME_Support is False. Only
Non-secure and Secure address spaces can be used.

• SECSID_WIDTH must be 2 when Untranslated_Transactions is not False and RME_Support is True.

• When AxMMUSECSID is Non-secure, AxNSE/AxPROT must indicate Non-secure.

• When AxMMUSECSID is Secure, AxNSE/AxPROT must indicate Non-secure or Secure.

• When AxMMUSECSID is Realm, AxNSE/AxPROT must indicate Non-secure or Realm.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

206

Chapter A14. Untranslated Transactions
A14.4. Translation identifiers

A14.4.2 StreamID (SID)

The StreamID can be used to map a request to a translation context in the MMU. Each address space uses a
different name-space, so they can have the same Stream Identifier values.

The width of AxMMUSID is determined by the property SID_WIDTH.

Table A14.6: SID_WIDTH property

Name Values Default Description

SID_WIDTH 0..32 0 StreamID width in bits, applies to
AWMMUSID and ARMMUSID.

If SID_WIDTH is 0, AxMMUSID signals are not present and the default value is used.

A14.4.3 SubstreamID (SSID)

The SubstreamID can be used with requests that have the same StreamID to associate different application address
translations to different logical blocks.

There is a separate enable signal AxMMUSSIDV for the SubstreamID, so a Manager can issue requests with or
without a SubstreamID.

• When AxMMUSSIDV is deasserted, AxMMUSSID must be 0.

Note that a stream with a SubstreamID of 0 is different from a stream with no valid substream (AxMMUSSIDV is
deasserted).

The width of AxMMUSSID is determined by the property SSID_WIDTH.

Table A14.7: SSID_WIDTH property

Name Values Default Description

SSID_WIDTH 0..20 0 SubstreamID width in bits, applies to
AWMMUSSID and ARMMUSSID.

When SSID_WIDTH is 0, AxMMUSSID and AxMMUSSIDV are not present on the interface and there are no
valid SubstreamIDs.

A14.4.4 PCIe considerations

When the Untranslated_Transactions signaling is used for interfacing to PCIe Root Complex, the following
considerations apply:

• AxMMUSECSID must be Non-secure or Realm.

• AxMMUSID corresponds to the PCIe Requester ID.

• AxMMUSSID corresponds to the PCIe PASID.

• AxMMUSSIDV is asserted if the transaction had a PASID prefix, otherwise it is deasserted.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

207

Chapter A14. Untranslated Transactions
A14.5. Translation fault flows

A14.5 Translation fault flows

An untranslated transaction can indicate which flow can be used when an SMMU encounters a translation fault.

If no flow is indicated, a Stall flow is assumed. The property MMUFLOW_Present is used to indicate whether
other SMMU flows are supported.

Table A14.8: MMUFLOW_Present property

MMUFLOW_Present Default Description

True AxMMUFLOW or AxMMUATST are present.

False Y AxMMUFLOW and AxMMUATST are not present.

MMUFLOW_Present must be False if Untranslated_Transactions is False.

If MMUFLOW_Present is True, then:

• If Untranslated_Transactions is True or v1, ARMMUATST and AWMMUATST are present on the
interface.

• If Untranslated_Transactions is v2 or v3, ARMMUFLOW and AWMMUFLOW are present on the
interface.

Version 1 of the specification for untranslated transactions supports the Stall and ATST flows, using the
AxMMUATST signals.

• When AxMMUATST is deasserted LOW, the Stall flow is used.

• When AxMMUATST is asserted HIGH, the ATST flow is used.

For version 2 and above, the AxMMUFLOW signals are used to indicate which flow can be used.

Table A14.9: AxMMUFLOW encodings

AxMMUFLOW Flow type Meaning

0b00 Stall The SMMU Stall flow can be used.

0b01 ATST The SMMU ATST flow must be used.

0b10 NoStall The SMMU NoStall flow must be used.

0b11 PRI The SMMU PRI flow can be used.

The following sections describe each flow in turn.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

208

Chapter A14. Untranslated Transactions
A14.5. Translation fault flows

A14.5.1 Stall flow

When the Stall flow is used, software can configure the SMMU to take one of the following actions when a
translation fault occurs:

• Terminate the transaction with an SLVERR response.

• Terminate the transaction with an OKAY response, data is RAZ/WI.

• Stall the translation and inform software that the translation is stalled. Software can then instruct the SMMU
to terminate the transaction or update the translation tables and retry the translation. The Manager is not
aware of the stall.

This flow enables software to manage translation faults and demand paging without the Manager being aware.
However, it has some limitations:

• The Manager can see very long transaction latency, potentially triggering timeouts.

• Due to the dependence of software activity, the Stall flow can cause deadlocks in some systems.

For example, it is not recommended for use with PCIe because of dependencies between outgoing
transactions to PCIe from a CPU, and incoming transactions from PCIe through the SMMU.

Enabling the Stall flow does not necessarily cause a stall when a translation fault occurs. Stalls only occur when
enabled by software. Software does not normally enable stalling for PCIe endpoints.

A14.5.2 ATST flow

The Address Translation Service Translated (ATST) flow indicates that the transaction has already been translated
by ATS. It is only used by PCIe Root Ports.

When the flow is ATST, the transaction might still undergo some translation, depending on the configuration of the
SMMU. For more information, see Arm® System Memory Management Unit Architecture Specification [7].

If a translation fault occurs, the transaction must be terminated with an SLVERR response.

When the flow is ATST, the following constraints apply:

• AxMMUSECSID must be Non-secure or Realm.

• If Untranslated_Transactions is True, v1 or v2 then AxMMUSSIDV must be LOW.

When Untranslated_Transactions is v3, it is permitted to assert AxMMUSSIDV when
AxMMUFLOW indicates ATST. This is to enable the transport of PASID and other attributes from a
PCIe transaction using the AxMMUSSID signal.

A14.5.3 NoStall flow

The NoStall flow is used by a Manager that is not able to be stalled.

If a translation fault occurs when using this flow, the Subordinate must terminate the transaction with an SLVERR
or OKAY response, even if software has configured the device to be stalled when a translation fault occurs.

This flow is recommended for Managers such as PCIe Root Ports which might deadlock if stalling is enabled by
software.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

209

Chapter A14. Untranslated Transactions
A14.5. Translation fault flows

A14.5.4 PRI flow

The PRI flow is designed for use with a PCIe integrated endpoint. The Manager uses the PRI flow to enable
software to respond to translation faults without risking deadlock.

When the flow is PRI and a translation fault occurs, the transaction is terminated with a TRANSFAULT response.
The Manager can then use a separate mechanism to request that the page is made available, before retrying the
transaction. This mechanism is normally PCIe PRI.

When this flow is used, software enables ATS but no ATS features are required in hardware.

A transaction that uses this flow might still be terminated by the SMMU with an SLVERR, if the translation failed
for a reason which cannot be resolved by a PRI request, for example because the SMMU is incorrectly configured.

The following rules apply to a TRANSFAULT response:

• TRANSFAULT is indicated by setting RRESP or BRESP to 0b101. See A4.3 Transaction response for all
encodings.

• A TRANSFAULT response is only permitted for requests using the PRI flow.

• If TRANSFAULT is used for one response transfer, it must be used for all response transfers of a transaction.

• If RRESP is TRANSFAULT, the read data in that transfer is not valid.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

210

Chapter A14. Untranslated Transactions
A14.6. Untranslated transaction qualifier

A14.6 Untranslated transaction qualifier

When the Untranslated_Transactions property is v3, a qualifier signal AxMMUVALID is added to the read and
write request channels.

When AxMMUVALID is deasserted, the transaction address is a physical address and does not require translation.
This enables a Manager to issue a mixture of translated and untranslated transactions.

The rules for using these signals are:

• When AxMMUVALID is asserted, the following signals are constrained:

– AxTAGOP must be 0b00 (Invalid)

• When AxMMUVALID is deasserted, the following signals are not applicable and can take any value:

– AxMMUSECSID

– AxMMUSID

– AxMMUSSIDV

– AxMMUSSID

– AxMMUFLOW

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

211

Chapter A14. Untranslated Transactions
A14.7. StashTranslation Opcode

A14.7 StashTranslation Opcode

The StashTranslation Opcode is a hint that an MMU should cache the table entry required to process the given
address, to reduce the latency for any future transactions using that table entry.

The requirements on the MMU depend on whether the address is virtual or physical, and if the Realm
Management Extension is being used:

• If AWMMUVALID is asserted, the StashTranslation request has a virtual address and the MMU should
cache the relevant page table entry.

• If AWMMUVALID is deasserted, the StashTranslation request has a physical address and the MMU should
cache the relevant Granule Protection Table entry.

If RME_Support is False, AWMMUVALID must be asserted for a StashTranslation request.

The StashTranslation Opcode can be used by a Manager and supported by a Subordinate if the following property
conditions apply:

• Untranslated_Transactions is v1, v2, or v3.

• Untranslated_Transactions is True and Cache_Stash_Transactions is True.

The rules for a StashTranslation operation are:

• The StashTranslation transaction consists of a request on the AW channel and a single response transfer on
the B channel. There are no write data transfers.

• AWSNOOP is 0b01110 to indicate StashTranslation, AWSNOOP_WIDTH can be 4 or 5.

• No stash target is supported. If present, AWSTASHNID, AWSTASHNIDEN, AWSTASHLPID, and
AWSTASHLPIDEN must be LOW.

• Any legal combination of AWCACHE and AWDOMAIN values is permitted. See Table A9.7.

• AWATOP is 0b000000 (Non-atomic transaction).

• AWTAGOP is 0b00 (Invalid).

• StashTranslation requests must not use the same AXI ID values that are used by non-StashTranslation
transactions that are outstanding at the same time. This rule ensures that there are no ordering constraints
between StashTranslation transactions and other transactions, so a Subordinate that does not stash
translations can respond immediately.

• An OKAY response indicates that the StashTranslation request has been accepted, not that the translation is
stashed. The request is a hint and is not guaranteed to be acted upon by a Completer.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

212

Chapter A14. Untranslated Transactions
A14.8. UnstashTranslation Opcode

A14.8 UnstashTranslation Opcode

The UnstashTranslation Opcode is a hint that the page table or granule table entry that corresponds to the given
transaction address and StreamID is not likely to be used again.

The requirements on the MMU depend on whether the address is virtual or physical, and if the Realm
Management Extension is being used:

• If AWMMUVALID is asserted, the UnstashTranslation request has a virtual address and the MMU should
deallocate the relevant page table entry.

• If AWMMUVALID is deasserted, the StashTranslation request has a physical address and the MMU should
deallocate the relevant Granule Protection Table entry.

If RME_Support is False, AWMMUVALID must be asserted for an UnstashTranslation request.

The UnstashTranslation_Transaction property is used to indicate whether an interface supports the
UnstashTranslation Opcode.

UnstashTranslation_Transaction Default Description

True UnstashTranslation is supported.

False Y UnstashTranslation is not supported.

The following table shows compatibility between Manager and Subordinate interfaces, according to the values of
the UnstashTranslation_Transaction property.

UnstashTranslation_Transaction Subordinate: False Subordinate: True

Manager: False Compatible. Compatible.

Manager: True Not compatible. Compatible.

The rules for an UnstashTranslation operation are:

• The UnstashTranslation transaction consists of a request on the AW channel and a single response transfer on
the B channel. There are no write data transfers.

• AWSNOOP is 0b10001 to indicate UnstashTranslation, AWSNOOP_WIDTH must be 5.

• No stash target is supported. If present, AWSTASHNID, AWSTASHNIDEN, AWSTASHLPID, and
AWSTASHLPIDEN must be LOW.

• Any legal combination of AWCACHE and AWDOMAIN values is permitted. See Table A9.7.

• AWATOP is 0b000000 (Non-atomic transaction).

• AWTAGOP is 0b00 (Invalid).

• AWID is unique-in-flight, which means:

– An UnstashTranslation request can only be issued if there are no outstanding transactions on the write
channels using the same ID value.

– A Manager must not issue a request on the write channels with the same ID as an outstanding
UnstashTranslation transaction.

– If present, AWIDUNQ must be asserted for an UnstashTranslation request.

• An OKAY response indicates that the UnstashTranslation request has been accepted, not that the translation
is deallocated. The request is a hint and is not guaranteed to be acted upon by a Completer.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

213

Chapter A15
Distributed Virtual Memory messages

This chapter describes how AXI supports distributed system MMUs using Distributed Virtual Memory (DVM)
messages to maintain all MMUs in a virtual memory system.

It contains the following sections:

• A15.1 Introduction to DVM transactions

• A15.2 Support for DVM messages

• A15.3 DVM messages

• A15.4 Transporting DVM messages

• A15.5 DVM Sync and Complete

• A15.6 Coherency Connection signaling

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

214

Chapter A15. Distributed Virtual Memory messages
A15.1. Introduction to DVM transactions

A15.1 Introduction to DVM transactions

DVM transactions are an optional feature used to pass messages that support the maintenance of a virtual memory
system. There are two types of DVM transactions: DVM message and DVM Complete.

A DVM message supports the following operations:

• TLB Invalidate

• Branch Predictor Invalidate

• Physical Instruction Cache Invalidate

• Virtual Instruction Cache Invalidate

• Synchronization

• Hint

DVM message requests are sent from a Subordinate interface, usually on an interconnect, to a Manager interface
using the snoop request (AC) channel.

DVM message responses are sent from a Manager to Subordinate interface using the snoop response (CR) channel.

A DVM Complete transaction is issued on the read request channel (AR) in response to a DVM Synchronization
(Sync) message, to indicate that all required operations and any associated transactions have completed.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

215

Chapter A15. Distributed Virtual Memory messages
A15.2. Support for DVM messages

A15.2 Support for DVM messages

The DVM_Message_Support property is used to indicate if an interface supports DVM messages.

Table A15.1: DVM_Message_Support property

DVM_Message_Support Default Description

Receiver DVM message and Synchronization transactions are
supported from Subordinate to Manager interfaces on the
AC/CR channels. DVM Complete transactions are
supported from Manager to Subordinate interfaces on the
AR/R channels.

False Y DVM message transactions are not supported.

Note that the Bidirectional option for DVM_Message_Support in previous issues of this specification is deprecated
in this specification.

DVM Complete messages require that ARDOMAIN is set to Shareable. Therefore, when
DVM_Message_Support is Receiver the Shareable_Transactions property must be True.

DVM messages were introduced in the Armv7 architecture and were extended in Armv8, Armv8.1, Armv8.4, and
Armv9.2 architectures. It is essential that interfaces initiating and receiving DVM messages support the same
architecture versions.

The following properties define the version that is supported by an interface:

• DVM_v8

• DVM_v8.1

• DVM_v8.4

• DVM_v9.2

Each property can take the values: True or False. If a property is not declared, then it is considered False.

In Table A15.2 there is an indication of which message versions are supported, depending on the property values.
A component that supports DVM messages from a specific version must also support earlier architecture versions.

Table A15.2: DVM message versions

DVM property Architecture support

DVM_v9.2 DVM_v8.4 DVM_v8.1 DVM_v8 Armv9.2 Armv8.4 Armv8.1 Armv8 Armv7

True True or False True or False True or False Y Y Y Y Y

False True True or False True or False - Y Y Y Y

False False True True or False - - Y Y Y

False False False True - - - Y Y

False False False False - - - - Y

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

216

Chapter A15. Distributed Virtual Memory messages
A15.3. DVM messages

A15.3 DVM messages

The following DVM messages are supported by the protocol:

• TLB Invalidate

• Branch Predictor Invalidate

• Physical Instruction Cache Invalidate

• Virtual Instruction Cache Invalidate

• Synchronization

• Hint

DVM transactions only operate on read-only structures, such as Instruction cache, Branch Predictor, and TLB, and
therefore only invalidation operations are required. The concept of cleaning does not apply to a read-only structure.
This means that it is functionally correct to invalidate more entries than the DVM message requires, although the
extra invalidations can affect performance.

A15.3.1 DVM message fields

The fields in DVM messages are shown in Table A15.3.

Table A15.3: DVM message fields

Name Width Description

VA 32-57 Virtual Address

PA 32-52 Physical Address

ASID 8 or 16 Address Space ID

ASIDV 1 Asserted HIGH to indicate that the ASID field is valid.
When deasserted, ASID must be zero.

VMID 8 or 16 Virtual Machine ID

VMIDV 1 Asserted HIGH to indicate that the VMID field is valid.
When deasserted, VMID must be zero.

DVMType 3 DVM message type:

0b000 TLB Invalidate (TLBI)

0b001 Branch Predictor Invalidate (BPI)

0b010 Physical Instruction Cache Invalidate (PICI)

0b011 Virtual Instruction Cache Invalidate (VICI)

0b100 Synchronization (Sync)

0b101 Reserved

0b110 Hint

0b111 Reserved

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

217

Chapter A15. Distributed Virtual Memory messages
A15.3. DVM messages

Table A15.3 – Continued from previous page

Name Width Description

Exception 2 Indicates the exception level that the transaction applies to:

0b00 Hypervisor and all Guest OS

0b01 EL3

0b10 Guest OS

0b11 Hypervisor

Security 2 Indicates which Security state the invalidation applies to.
See Table A15.6 for encodings.

Leaf 1 Indicates whether only leaf entries are invalidated:

0b0 Invalidate all associated translations.

0b1 Invalidate Leaf Entry only.

Stage 2 Indicates which stages are invalidated:

0b00 Armv7: Stage of invalidation varies with invalidation type.
Armv8 and later: Stage 1 and Stage 2 invalidation.

0b01 Stage 1 only invalidation.

0b10 Stage 2 only invalidation.

0b11 GPT

Num 5 Used as a constant multiplication factor in the range calculation.
All binary values are valid.

Scale 2 Used as a constant in address range exponent calculation.
All binary values are valid.

TTL 2 Hint of Translation Table Level (TTL) which includes the addresses to be
invalidated. See Table A15.4 and Table A15.5 for details.

TG 2 Translation Granule (TG).
For TLB Invalidations by range, TG indicates the granule size:

0b00 Reserved.

0b01 4K

0b10 16K

0b11 64K
For non-range TLB Invalidations, TG and TTL indicate the table level hint, see
Table A15.5.

VI 16 Virtual Index, used for PICI messages.

VIV 2 Virtual Index Valid:
0b00 Virtual Index not valid

0b01 Reserved

0b10 Reserved

0b11 Virtual Index valid

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

218

Chapter A15. Distributed Virtual Memory messages
A15.3. DVM messages

Table A15.3 – Continued from previous page

Name Width Description

IS 4 Invalidation Size encoding for GPT TLBI by PA operations:

0b0000 4KB

0b0001 16KB

0b0010 64KB

0b0011 2MB

0b0100 32MB

0b0101 512MB

0b0110 1GB

0b0111 16GB

0b1000 64GB

0b1001 512GB

0b1010-
0b1111

Reserved

Addr 1 Indicates if the message includes an address.

0b0 No address information.

0b1 Address included, this is a two-part message.

Range 1 Asserted HIGH to indicate that the 2nd part indicates an address range.

Completion 1 Asserted HIGH to indicate that a Completion message is required.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

219

Chapter A15. Distributed Virtual Memory messages
A15.3. DVM messages

TLB Invalidate level hint

For TLB Invalidations by address range, the TTL field indicates which level of translation table walk holds the leaf
entry for the address being invalidated. The encodings are shown in Table A15.4.

Table A15.4: Leaf entry hint for range-based TLB Invalidations

TTL Meaning

0b00 No level hint information.

0b01 The leaf entry is on level 1 of the translation table walk.

0b10 The leaf entry is on level 2 of the translation table walk.

0b11 The leaf entry is on level 3 of the translation table walk.

For TLB Invalidations by non-range address, the TTL and TG fields indicate which level of translation table walk
holds the leaf entry for the address being invalidated. The encodings are shown in Table A15.5.

Table A15.5: Leaf entry hint for non-range TLB Invalidations

TG TTL Meaning

0b00 0b00 No level hint

0b01 Reserved

0b10 Reserved

0b11 Reserved

0b01 0b00 No level hint

0b01 The leaf entry is on level 1 of the translation table walk.

0b10 The leaf entry is on level 2 of the translation table walk.

0b11 The leaf entry is on level 3 of the translation table walk.

0b10 0b00 No level hint

0b01 No level hint

0b10 The leaf entry is on level 2 of the translation table walk.

0b11 The leaf entry is on level 3 of the translation table walk.

0b11 0b00 No level hint

0b01 The leaf entry is on level 1 of the translation table walk.

0b10 The leaf entry is on level 2 of the translation table walk.

0b11 The leaf entry is on level 3 of the translation table walk.

Security field

The Security field has different meanings depending on the DVM Type, as shown in Table A15.6.

Table A15.6: Security field encodings per DVM Type

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

220

Chapter A15. Distributed Virtual Memory messages
A15.3. DVM messages

Security TLBI BPI PICI All PICI by PA VICI

0b00 Realm Secure and
Non-secure

Root, Realm,
Secure, and
Non-secure

Root Secure and
Non-secure

0b01 Non-secure
address from a
Secure context

Reserved Realm and
Non-secure

Realm Reserved

0b10 Secure Reserved Secure and
Non-secure

Secure Secure

0b11 Non-secure Reserved Non-secure Non-secure Non-secure

ASID field

The ASID field contains an 8-bit or 16-bit Address Space ID.

• Armv7 supports only an 8-bit ASID.

• Armv8 and above support both 8-bit and 16-bit ASID.

It cannot be determined from a DVM message whether the message uses an 8-bit or 16-bit ASID. All 8-bit ASID
messages are required to set the ASID[15:8] bits to zero.

It is expected that most systems will use a single ASID size across the entire system, either 8-bit ASID or 16-bit
ASID.

In a system that contains a mix of 8-bit ASID and 16-bit ASID components, it is expected that all maintenance is
done by an agent that uses 16-bit ASID. This ensures that the agent can perform maintenance on both the 8-bit
ASID and 16-bit ASID components.

The interoperability requirements are:

• For an 8-bit ASID agent sending a message to a 16-bit ASID agent, a message appears as a 16-bit ASID with
the upper 8 bits set to zero.

• For a 16-bit ASID agent sending a message to an 8-bit VMID agent:

– If the upper 8 bits are zero, the message was received correctly.

– If the upper 8 bits are non-zero, then over-invalidation will occur, since the 8-bit ASID agent ignores the
upper 8 bits.

VMID field

The VMID field contains an 8-bit or 16-bit Virtual Machine ID.

• Armv7 and Armv8 support only 8-bit VMIDs.

• Armv8.1 and above support both 8-bit and 16-bit VMIDs.

It cannot be determined from a DVM message whether the message uses an 8-bit or 16-bit VMID. All 8-bit VMID
messages are required to set the VMID[15:8] field to zero.

It is expected that most systems use a single VMID size across the entire system, either 8-bit VMID or 16-bit
VMID.

In a system that contains a mix of 8-bit VMID and 16-bit VMID components, it is expected that all maintenance is
done by an agent that uses 16-bit VMID. This ensures that the agent can perform maintenance on both the 8-bit
VMID and 16-bit VMID components.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

221

Chapter A15. Distributed Virtual Memory messages
A15.3. DVM messages

The interoperability requirements are:

• For an 8-bit VMID agent sending a message to a 16-bit VMID agent, a message appears as a 16-bit VMID
with the upper 8 bits set to zero.

• For a 16-bit VMID agent sending a message to an 8-bit VMID agent:

– If the upper 8 bits are zero, the message was received correctly.

– If the upper 8 bits are nonzero, then over-invalidation will occur, since the 8-bit VMID agent ignores the
upper 8 bits.

When Armv8.1 and above is supported, ACVMIDEXT is included on the AC channel to transport the upper byte
of 16-bit VMIDs. See A15.4 Transporting DVM messages for more details.

A15.3.2 TLB Invalidate messages

This section details the TLB Invalidate (TLBI) message.

For a TLBI message some fields have a fixed value, as shown in Table A15.7.

Table A15.7: Fixed field values for a TLBI message

Name Value Meaning

DVMType 0b000 TLB Invalidate opcode.

Completion 0b0 Completion not required.

The entries on which the TLBI must operate depends on the fields in the message. All supported TLBI operations
are shown in Table A15.8.

The Arm column indicates the minimum Arm architecture version required to support the message.

The field to signal mappings for TLBI messages are detailed in Table A15.20.

Table A15.8: TLBI messages

Operation Arm Exception Security VMIDV ASIDV Leaf Stage Addr

EL3 TLBI all v8 0b01 0b10 0b0 0b0 0b0 0b00 0b0

EL3 TLBI by VA v8 0b01 0b10 0b0 0b0 0b0 0b00 0b1

EL3 TLBI by VA, Leaf only v8 0b01 0b10 0b0 0b0 0b1 0b00 0b1

Secure Guest OS TLBI by Non-secure IPA v8.4 0b10 0b01 0b1 0b0 0b0 0b10 0b1

Secure Guest OS TLBI by Non-secure IPA,
Leaf only

v8.4 0b10 0b01 0b1 0b0 0b1 0b10 0b1

Secure TLBI all v7 0b10 0b10 0b0 0b0 0b0 0b00 0b0

Secure TLBI by VA v7 0b10 0b10 0b0 0b0 0b0 0b00 0b1

Secure TLBI by VA, Leaf only v8 0b10 0b10 0b0 0b0 0b1 0b00 0b1

Secure TLBI by ASID v7 0b10 0b10 0b0 0b1 0b0 0b00 0b0

Secure TLBI by ASID and VA v7 0b10 0b10 0b0 0b1 0b0 0b00 0b1

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

222

Chapter A15. Distributed Virtual Memory messages
A15.3. DVM messages

Table A15.8 – Continued from previous page

Operation Arm Exception Security VMIDV ASIDV Leaf Stage Addr

Secure TLBI by ASID and VA, Leaf only v8 0b10 0b10 0b0 0b1 0b1 0b00 0b1

Secure Guest OS TLBI all v8.4 0b10 0b10 0b1 0b0 0b0 0b00 0b0

Secure Guest OS TLBI by VA v8.4 0b10 0b10 0b1 0b0 0b0 0b00 0b1

Secure Guest OS TLBI all, Stage 1 only v8.4 0b10 0b10 0b1 0b0 0b0 0b01 0b0

Secure Guest OS TLBI by Secure IPA v8.4 0b10 0b10 0b1 0b0 0b0 0b10 0b1

Secure Guest OS TLBI by VA, Leaf only v8.4 0b10 0b10 0b1 0b0 0b1 0b00 0b1

Secure Guest OS TLBI by Secure IPA,
Leaf only

v8.4 0b10 0b10 0b1 0b0 0b1 0b10 0b1

Secure Guest OS TLBI by ASID v8.4 0b10 0b10 0b1 0b1 0b0 0b00 0b0

Secure Guest OS TLBI by ASID and VA v8.4 0b10 0b10 0b1 0b1 0b0 0b00 0b1

Secure Guest OS TLBI by ASID and VA,
Leaf only

v8.4 0b10 0b10 0b1 0b1 0b1 0b00 0b1

All OS TLBI all v7 0b10 0b11 0b0 0b0 0b0 0b00 0b0

Guest OS TLBI all, Stage 1 and 2 v7 0b10 0b11 0b1 0b0 0b0 0b00 0b0

Guest OS TLBI by VA v7 0b10 0b11 0b1 0b0 0b0 0b00 0b1

Guest OS TLBI all, Stage 1 only v8 0b10 0b11 0b1 0b0 0b0 0b01 0b0

Guest OS TLBI by IPA v8 0b10 0b11 0b1 0b0 0b0 0b10 0b1

Guest OS TLBI by VA, Leaf only v8 0b10 0b11 0b1 0b0 0b1 0b00 0b1

Guest OS TLBI by IPA, Leaf only v8 0b10 0b11 0b1 0b0 0b1 0b10 0b1

Guest OS TLBI by ASID v7 0b10 0b11 0b1 0b1 0b0 0b00 0b0

Guest OS TLBI by ASID and VA v7 0b10 0b11 0b1 0b1 0b0 0b00 0b1

Guest OS TLBI by ASID and VA, Leaf
only

v8 0b10 0b11 0b1 0b1 0b1 0b00 0b1

Secure Hypervisor TLBI all v8.4 0b11 0b10 0b0 0b0 0b0 0b00 0b0

Secure Hypervisor TLBI by VA v8.4 0b11 0b10 0b0 0b0 0b0 0b00 0b1

Secure Hypervisor TLBI by VA, Leaf only v8.4 0b11 0b10 0b0 0b0 0b1 0b00 0b1

Secure Hypervisor TLBI by ASID v8.4 0b11 0b10 0b0 0b1 0b0 0b00 0b0

Secure Hypervisor TLBI by ASID and VA v8.4 0b11 0b10 0b0 0b1 0b0 0b00 0b1

Secure Hypervisor TLBI by ASID and VA,
Leaf only

v8.4 0b11 0b10 0b0 0b1 0b1 0b00 0b1

Hypervisor TLBI all v7 0b11 0b11 0b0 0b0 0b0 0b00 0b0

Hypervisor TLBI by VA v7 0b11 0b11 0b0 0b0 0b0 0b00 0b1

Hypervisor TLBI by VA, Leaf only v8 0b11 0b11 0b0 0b0 0b1 0b00 0b1

Hypervisor TLBI by ASID v8.1 0b11 0b11 0b0 0b1 0b0 0b00 0b0

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

223

Chapter A15. Distributed Virtual Memory messages
A15.3. DVM messages

Table A15.8 – Continued from previous page

Operation Arm Exception Security VMIDV ASIDV Leaf Stage Addr

Hypervisor TLBI by ASID and VA v8.1 0b11 0b11 0b0 0b1 0b0 0b00 0b1

Hypervisor TLBI by ASID and VA, Leaf
only

v8.1 0b11 0b11 0b0 0b1 0b1 0b00 0b1

Realm TLBI all v9.2 0b10 0b00 0b0 0b0 0b0 0b00 0b0

Realm Guest OS TLBI all, Stage 1 only v9.2 0b10 0b00 0b1 0b0 0b0 0b01 0b0

Realm Guest OS TLBI all, Stage 1 and 2 v9.2 0b10 0b00 0b1 0b0 0b0 0b00 0b0

Realm Guest OS TLBI by VA v9.2 0b10 0b00 0b1 0b0 0b0 0b00 0b1

Realm Guest OS TLBI by VA, Leaf only v9.2 0b10 0b00 0b1 0b0 0b1 0b00 0b1

Realm Guest OS TLBI by ASID v9.2 0b10 0b00 0b1 0b1 0b0 0b00 0b0

Realm Guest OS TLBI by ASID and VA v9.2 0b10 0b00 0b1 0b1 0b0 0b00 0b1

Realm Guest OS TLBI by ASID and VA,
Leaf only

v9.2 0b10 0b00 0b1 0b1 0b1 0b00 0b1

Realm Guest OS TLBI by IPA v9.2 0b10 0b00 0b1 0b0 0b0 0b10 0b1

Realm Guest OS TLBI by IPA, Leaf only v9.2 0b10 0b00 0b1 0b0 0b1 0b10 0b1

Realm Hypervisor TLBI all v9.2 0b11 0b00 0b0 0b0 0b0 0b00 0b0

Realm Hypervisor TLBI by VA v9.2 0b11 0b00 0b0 0b0 0b0 0b00 0b1

Realm Hypervisor TLBI by VA, Leaf only v9.2 0b11 0b00 0b0 0b0 0b1 0b00 0b1

Realm Hypervisor TLBI by ASID v9.2 0b11 0b00 0b0 0b1 0b0 0b00 0b0

Realm Hypervisor TLBI by ASID and VA v9.2 0b11 0b00 0b0 0b1 0b0 0b00 0b1

Realm Hypervisor TLBI by ASID and VA,
Leaf only

v9.2 0b11 0b00 0b0 0b1 0b1 0b00 0b1

GPT TLBI by PA v9.2 0b01 0b10 0b0 0b0 0b0 0b11 0b1

GPT TLBI by PA, Leaf only v9.2 0b01 0b10 0b0 0b0 0b1 0b11 0b1

GPT TLBI all v9.2 0b01 0b10 0b0 0b0 0b0 0b11 0b0

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

224

Chapter A15. Distributed Virtual Memory messages
A15.3. DVM messages

TLB Invalidate by Range

When Armv8.4 or later is supported, TLBI operations by IPA or VA have the option to operate on an address range
if the Range field is 0b1.

The Range field must be 0b0 if either:

• Armv8.4 is not supported.

• The message type is not TLB Invalidate by IPA or VA.

When the Range field is 0b1, the address range to invalidate is calculated using the following formula:

BaseAddr ≤ AddressRange < BaseAddr +
(
(Num+ 1)× 2(5×Scale+1) × TG

)
Where:

• TG is the Transaction Granule, provided in the message. See Table A15.3 for encodings.

• Scale is provided in the message, it can take any value from 0-3.

• Num is provided in the message, it can take any value from 0-31.

• BaseAddr is the base address of the range, based on TG:

– 4K: BaseAddr is VA[MaxVA:12].

– 16K: BaseAddr is VA[MaxVA:14], VA[13:12] must be zero.

– 64K: BaseAddr is VA[MaxVA:16], VA[15:12] must be zero.

A TLBI by Range is a 2-part message with field mappings described in Table A15.20.

GPT TLB Invalidate

Granule Protection Table (GPT) TLBI by PA operations perform range-based invalidation and invalidate TLB
entries starting from the PA, within the range as specified in the Invalidation Size (IS) field. See Table A15.3 for
encodings.

If the PA is not aligned to the IS value, no TLB entries are required to be invalidated.

The IS field is applicable only in GPT TLBI by PA operations.

• A GPT TLBI all message is signaled using a 1-part message with the Range field set to 0b0.

• A GPT TLBI by PA message is signaled using a 2-part message with the Range field set to 0b1.

The field to signal mappings for GPT TLBI messages are shown in Table A15.20.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

225

Chapter A15. Distributed Virtual Memory messages
A15.3. DVM messages

A15.3.3 Branch Predictor Invalidate messages

The Branch Predictor Invalidate (BPI) message is used to invalidate virtual addresses from branch predictors.

A BPI message is signaled using a 1-part or 2-part message with field to signal mappings detailed in Table A15.21.

The fixed field values for a BPI message are shown in Table A15.9.

Table A15.9: Fixed field values for a BPI message

Name Value Meaning

DVMType 0b001 Branch Predictor Invalidate opcode

Completion 0b0 Completion not required

Range 0b0 Address is not a range

VMIDV 0b0 VMID field not valid

ASIDV 0b0 ASID field not valid

Exception 0b00 Hypervisor and all Guest OS

Security 0b00 Secure and Non-secure

Leaf 0b0 Leaf information is N/A

Stage 0b00 Stage information is N/A

All supported BPI operations are shown in Table A15.10.

The Arm column indicates the minimum Arm architecture version required to support the message.

Table A15.10: BPI messages

Operation Arm Addr

Branch Predictor Invalidate all v7 0b0

Branch Predictor Invalidate by VA v7 0b1

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

226

Chapter A15. Distributed Virtual Memory messages
A15.3. DVM messages

A15.3.4 Instruction cache invalidations

Instruction caches can use either a physical address or a virtual address to tag the data they contain. A system
might contain a mixture of both forms of cache.

The DVM protocol includes instruction cache invalidation operations that use physical addresses and operations
that use virtual addresses. A component that receives DVM messages must support both forms of message,
independent of the style of instruction cache implemented. It might be necessary to over-invalidate in the case
where a message is received in a format that is not native to the cache type.

Physical Instruction Cache Invalidate

This section lists the Physical Instruction Cache Invalidate (PICI) operations that the DVM message supports.
This message type is also used for Instruction Caches which are Virtually Indexed Physically Tagged (VIPT).

A PICI message is signaled using a 1-part or 2-part message with field to signal mappings detailed in Table
A15.22. The fixed field values for a PICI message are shown in Table A15.11.

Table A15.11: Fixed field values for a PICI message

Name Value Meaning

DVMType 0b010 Physical Instruction Cache Invalidate opcode

Completion 0b0 Completion not required

Range 0b0 Address is not a range

Exception 0b00 Hypervisor and all Guest OS

Leaf 0b0 Leaf information is N/A

Stage 0b00 Stage information is N/A

All supported PICI operations are shown in Table A15.12.

Table A15.12: PICI messages

Operation Arm Security VIV Addr

PICI all Root, Realm, Secure and Non-secure v9.2 0b00 0b00 0b0

PICI by PA without Virtual Index, Root only v9.2 0b00 0b00 0b1

PICI by PA with Virtual Index, Root only v9.2 0b00 0b11 0b1

PICI all Realm and Non-secure v9.2 0b01 0b00 0b0

PICI by PA without Virtual Index, Realm only v9.2 0b01 0b00 0b1

PICI by PA with Virtual Index, Realm only v9.2 0b01 0b11 0b1

PICI all Secure and Non-secure v7 0b10 0b00 0b0

PICI by PA without Virtual Index, Secure only v7 0b10 0b00 0b1

PICI by PA with Virtual Index, Secure only v7 0b10 0b11 0b1

PICI all, Non-secure only v7 0b11 0b00 0b0

PICI by PA without Virtual Index, Non-secure only v7 0b11 0b00 0b1

PICI by PA with Virtual Index, Non-secure only v7 0b11 0b11 0b1

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

227

Chapter A15. Distributed Virtual Memory messages
A15.3. DVM messages

When the Virtual Index Valid (VIV) field is 0b11, then VI[27:12] is used as part of the Physical Address.

Note that in previous issues of this specification, a PICI all with Security value of 0b10 was incorrectly labeled as
Secure only when it should have been Secure and Non-secure.

Virtual Instruction Cache Invalidate

This section lists the Virtual Instruction Cache Invalidate (VICI) operations that the DVM message supports.

A VICI message is signaled using a 1-part or 2-part message with field to signal mappings detailed in Table
A15.22.

The fixed field values for a VICI message are shown in Table A15.13.

Table A15.13: Fixed field values for a VICI message

Name Value Meaning

DVMType 0b011 Virtual Instruction Cache Invalidate opcode

Completion 0b0 Completion not required

Range 0b0 Address is not a range

Leaf 0b0 Leaf information is N/A

Stage 0b00 Stage information is N/A

All supported VICI operations are shown in Table A15.14.

The Arm column indicates the minimum Arm architecture version required to support the message.

Table A15.14: VICI messages

Operation Arm Exception Security VMIDV ASIDV Addr

Hypervisor and all Guest OS VICI all, Secure and Non-secure v7 0b00 0b00 0b0 0b0 0b0

Hypervisor and all Guest OS VICI all, Non-secure only v7 0b00 0b11 0b0 0b0 0b0

All Guest OS VICI by ASID and VA, Secure only v7 0b10 0b10 0b0 0b1 0b1

All Guest OS VICI by VMID, Secure only v8.4 0b10 0b10 0b1 0b0 0b0

All Guest OS VICI by ASID, VA and VMID, Secure only v8.4 0b10 0b10 0b1 0b1 0b1

All Guest OS VICI by VMID, Non-secure only v7 0b10 0b11 0b1 0b0 0b0

All Guest OS VICI by ASID, VA and VMID, Non-secure only v7 0b10 0b11 0b1 0b1 0b1

Hypervisor VICI by VA, Non-secure only v7 0b11 0b11 0b0 0b0 0b1

Hypervisor VICI by ASID and VA, Non-secure only v8.1 0b11 0b11 0b0 0b1 0b1

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

228

Chapter A15. Distributed Virtual Memory messages
A15.3. DVM messages

A15.3.5 Synchronization message

A Synchronization (Sync) message is used when the requester needs to know when all previous invalidations are
complete. For more information on how to use the Sync message, see A15.5 DVM Sync and Complete.

A Sync message is signaled using a 1-part message with field to signal mappings detailed in Table A15.21.

The fixed field values for a Sync message are shown in Table A15.15.

Table A15.15: Fixed field values for a Sync message

Name Value Meaning

DVMType 0b100 Sync opcode

Completion 0b1 Completion required

ASIDV 0b0 No ASID information

VMIDV 0b0 No VMID information

Addr 0b0 No address information

Range 0b0 No address range

Exception 0b00 Exception information is N/A

Security 0b00 Security information is N/A

Leaf 0b0 Leaf information is N/A

Stage 0b00 Stage information is N/A

A15.3.6 Hint message

A reserved message address space is provided for future Hint messages.

The fixed field values for a Hint message are shown in Table A15.16.

Table A15.16: Fixed field values for a Hint message

Name Value Meaning

DVMType 0b110 Hint opcode

Completion 0b0 Completion not required

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

229

Chapter A15. Distributed Virtual Memory messages
A15.4. Transporting DVM messages

A15.4 Transporting DVM messages

A DVM message transaction consists of one request transfer on the snoop request (AC) channel and one response
on the snoop response (CR) channel. There can be one or two transactions per message, the Addr field in the first
request indicates if another transaction is required.

DVM messages that do not include an address are sent using one transaction.

DVM messages that include an address are sent using two transactions.

An interconnect is usually used to replicate and distribute DVM message requests to participating Manager
components. Managers can use the Coherency Connection signaling to opt into receiving messages at runtime, see
A15.6 Coherency Connection signaling.

Flows for one-part and two-part messages are shown in Figure A15.1.

AC

CR

Interconnect
(Subordinate Interface)

Receiving
Manager

AC

CR

Interconnect
(Subordinate Interface)

Receiving
Manager

DVM request

(1 part)

response

DVM request

(2nd part)

DVM request

(1st part)

response

to 2nd part

response

to 1st part

Figure A15.1: DVM message flows

The following rules apply to two-part DVM messages:

• The requests are always sent as successive transfers, with no other message requests between them.

• A component issuing a two-part DVM message must be able to issue the second part of the message without
requiring a response to the first part of the message.

A15.4.1 Signaling for DVM messages

A DVM request is transported on the snoop request channel from a Subordinate to a Manager interface. Table
A15.17 shows the signals that form the snoop request channel.

Table A15.17: Snoop request channel

Name Width Default Description

ACVALID 1 - Asserted high to indicate that the signals
on the AC channel are valid.

ACREADY 1 - Asserted high to indicate that a transfer on
the AC channel can be accepted.

ACADDR ADDR_WIDTH - Used to carry the payload for DVM
message requests.

ACVMIDEXT 4 - Extension to support 16-bit VMID in DVM
messages.

ACTRACE 1 - Trace signal associated with the snoop
request channel.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

230

Chapter A15. Distributed Virtual Memory messages
A15.4. Transporting DVM messages

The response to a DVM request is transported on the snoop response channel from a Manager to a Subordinate
interface. Table A15.18 shows the signals that form the snoop response channel.

Table A15.18: Snoop response channel

Name Width Default Description

CRVALID 1 - Asserted high to indicate that the signals
on the CR channel are valid.

CRREADY 1 - Asserted high to indicate that a transfer on
the CR channel can be accepted.

CRTRACE 1 - Trace signal associated with the snoop
response channel.

A DVM response acknowledges that the request has been received but does not indicate the success or failure of a
DVM message. Reordering is not supported on the AC or CR channels, so responses are returned in the same
order as the AC requests were issued.

The ACTRACE and CRTRACE signals act the same as trace signals on other channels, see A13.3 Trace signals
for more information.

Note that previous issues of this specification included a snoop response indicator, CRRESP to indicate an error
response. This has not been widely used, so is deprecated as part of the specification simplification process.

Rules for snoop channels

The rules for snoop channel signals are similar to those for other channels:

• ACVALID must only be asserted by a Subordinate when there is valid address and control information.

• When asserted, ACVALID must remain asserted until the rising clock edge after the Manager asserts the
ACREADY signal.

• CRVALID is asserted to indicate that the Manager has acknowledged the DVM message.

• When asserted, CRVALID must remain asserted until the rising clock edge after the Subordinate asserts the
CRREADY signal.

The rules for dependencies between the snoop request and response channels are listed below and illustrated in
Figure A15.2.

• The Subordinate must not wait for the Manager to assert ACREADY before asserting ACVALID.

• The Manager can wait for ACVALID to be asserted before it asserts ACREADY.

• The Manager can assert ACREADY before ACVALID is asserted.

• The Manager must wait for both ACVALID and ACREADY to be asserted before it asserts CRVALID to
indicate that a valid response is available.

• The Manager must not wait for the Subordinate to assert CRREADY before asserting CRVALID.

• The Subordinate can wait for CRVALID to be asserted before it asserts CRREADY.

• The Subordinate can assert CRREADY before CRVALID is asserted.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

231

Chapter A15. Distributed Virtual Memory messages
A15.4. Transporting DVM messages

ACREADY CRREADY

ACVALID CRVALID

Figure A15.2: Snoop transaction handshake dependencies

A15.4.2 Address widths in DVM messages

The property ADDR_WIDTH is used to specify the width of ARADDR, AWADDR, and ACADDR. This sets the
physical address width used by an interface.

The ACADDR signal is also used to transport the Virtual Address (VA), so the required VA width also sets a
minimum constraint on ADDR_WIDTH. Table A15.19 shows some common VA widths and the minimum
ADDR_WIDTH required.

Table A15.19: Common VA widths and minimum ADDR_WIDTH

VA width Minimum
ADDR_WIDTH

32 32

41 40

49 44

53 48

57 48

VA widths greater than 57-bits are not supported.

If the PA width exceeds the VA width, then virtual address operations might receive additional address information
in a DVM message. In this case, any additional address information must be ignored and operations performed
using only the supported address bits.

If a component supports a larger VA width than its PA width, the component must take appropriate action
regarding the additional physical address bits. See A4.1.5 Transfer address for more details on mismatched
address widths.

A15.4.3 Mapping message fields to signals

The fields in DVM messages are transported using bits of the ACADDR and ACVMIDEXT signals.

There are different mappings for each message type, shown in the tables below. The bit position allocation might
appear irregular but is used to ease the translation between implementations with different address widths.

For Hint messages, the Completion (0b0) and DVMType (0b110) fields are at ACADDR[15] and
ACADDR[14:12] respectively, other mappings are IMPLEMENTATION DEFINED.

The mappings for TLB Invalidate messages are shown in Table A15.20.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

232

Chapter A15. Distributed Virtual Memory messages
A15.4. Transporting DVM messages

Table A15.20: Field mappings for TLB Invalidate messages

Signal TLBI 1-part TLBI 1st of
2-part

TLBI 2nd
part by VA

TLBI 2nd
part by
range

GPT TLBI
1st part

GPT TLBI
2nd part

ACADDR[51] 0b0 0b0 0b0 0b0 0b0 PA[51]

ACADDR[50] 0b0 0b0 0b0 0b0 0b0 PA[50]

ACADDR[49] 0b0 0b0 0b0 0b0 0b0 PA[49]

ACADDR[48] 0b0 0b0 0b0 0b0 0b0 PA[48]

ACADDR[47] 0b0 VA[56] VA[52] VA[52] 0b0 PA[47]

ACADDR[46] 0b0 VA[55] VA[51] VA[51] 0b0 PA[46]

ACADDR[45] 0b0 VA[54] VA[50] VA[50] 0b0 PA[45]

ACADDR[44] 0b0 VA[53] VA[49] VA[49] 0b0 PA[44]

ACADDR[43] VMID[15] VA[48] VA[44] VA[44] 0b0 PA[43]

ACADDR[42] VMID[14] VA[47] VA[43] VA[43] 0b0 PA[42]

ACADDR[41] VMID[13] VA[46] VA[42] VA[42] 0b0 PA[41]

ACADDR[40] VMID[12] VA[45] VA[41] VA[41] 0b0 PA[40]

ACADDR[39] ASID[15] ASID[15] VA[39] VA[39] 0b0 PA[39]

ACADDR[38] ASID[14] ASID[14] VA[38] VA[38] 0b0 PA[38]

ACADDR[37] ASID[13] ASID[13] VA[37] VA[37] 0b0 PA[37]

ACADDR[36] ASID[12] ASID[12] VA[36] VA[36] 0b0 PA[36]

ACADDR[35] ASID[11] ASID[11] VA[35] VA[35] 0b0 PA[35]

ACADDR[34] ASID[10] ASID[10] VA[34] VA[34] 0b0 PA[34]

ACADDR[33] ASID[9] ASID[9] VA[33] VA[33] 0b0 PA[33]

ACADDR[32] ASID[8] ASID[8] VA[32] VA[32] 0b0 PA[32]

ACADDR[31] VMID[7] VMID[7] VA[31] VA[31] 0b0 PA[31]

ACADDR[30] VMID[6] VMID[6] VA[30] VA[30] 0b0 PA[30]

ACADDR[29] VMID[5] VMID[5] VA[29] VA[29] 0b0 PA[29]

ACADDR[28] VMID[4] VMID[4] VA[28] VA[28] 0b0 PA[28]

ACADDR[27] VMID[3] VMID[3] VA[27] VA[27] 0b0 PA[27]

ACADDR[26] VMID[2] VMID[2] VA[26] VA[26] 0b0 PA[26]

ACADDR[25] VMID[1] VMID[1] VA[25] VA[25] 0b0 PA[25]

ACADDR[24] VMID[0] VMID[0] VA[24] VA[24] 0b0 PA[24]

ACADDR[23] ASID[7] ASID[7] VA[23] VA[23] 0b0 PA[23]

ACADDR[22] ASID[6] ASID[6] VA[22] VA[22] 0b0 PA[22]

ACADDR[21] ASID[5] ASID[5] VA[21] VA[21] 0b0 PA[21]

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

233

Chapter A15. Distributed Virtual Memory messages
A15.4. Transporting DVM messages

Table A15.20 – Continued from previous page

Signal TLBI 1-part TLBI 1st of
2-part

TLBI 2nd
part by VA

TLBI 2nd
part by
range

GPT TLBI
1st part

GPT TLBI
2nd part

ACADDR[20] ASID[4] ASID[4] VA[20] VA[20] 0b0 PA[20]

ACADDR[19] ASID[3] ASID[3] VA[19] VA[19] 0b0 PA[19]

ACADDR[18] ASID[2] ASID[2] VA[18] VA[18] 0b0 PA[18]

ACADDR[17] ASID[1] ASID[1] VA[17] VA[17] 0b0 PA[17]

ACADDR[16] ASID[0] ASID[0] VA[16] VA[16] 0b0 PA[16]

ACADDR[15] 0b0
(Completion)

0b0
(Completion)

VA[15] VA[15] 0b0
(Completion)

PA[15]

ACADDR[14] 0b0
(DVMType[2])

0b0
(DVMType[2])

VA[14] VA[14] 0b0
(DVMType[2])

PA[14]

ACADDR[13] 0b0
(DVMType[1])

0b0
(DVMType[1])

VA[13] VA[13] 0b0
(DVMType[1])

PA[13]

ACADDR[12] 0b0
(DVMType[0])

0b0
(DVMType[0])

VA[12] VA[12] 0b0
(DVMType[0])

PA[12]

ACADDR[11] Exception[1] Exception[1] TG[1] TG[1] Exception[1] IS[3]

ACADDR[10] Exception[0] Exception[0] TG[0] TG[0] Exception[0] IS[2]

ACADDR[9] Security[1] Security[1] TTL[1] TTL[1] Security[1] IS[1]

ACADDR[8] Security[0] Security[0] TTL[0] TTL[0] Security[0] IS[0]

ACADDR[7] 0b0 (Range) Range 0b0 Scale[1] Range 0b0

ACADDR[6] VMIDV VMIDV 0b0 Scale[0] 0b0
(VMIDV)

0b0

ACADDR[5] ASIDV ASIDV 0b0 Num[4] 0b0 (ASIDV) 0b0

ACADDR[4] Leaf Leaf 0b0 Num[3] Leaf 0b0

ACADDR[3] Stage[1] Stage[1] VA[40] VA[40] Stage[1] 0b0

ACADDR[2] Stage[0] Stage[0] 0b0 Num[2] Stage[0] 0b0

ACADDR[1] 0b0 0b0 0b0 Num[1] 0b0 0b0

ACADDR[0] 0b0 (Addr) 0b1 (Addr) 0b0 Num[0] Addr 0b0

ACVMIDEXT[3] VMID[11] VMID[11] VMID[15] VMID[15] 0b0 0b0

ACVMIDEXT[2] VMID[10] VMID[10] VMID[14] VMID[14] 0b0 0b0

ACVMIDEXT[1] VMID[9] VMID[9] VMID[13] VMID[13] 0b0 0b0

ACVMIDEXT[0] VMID[8] VMID[8] VMID[12] VMID[12] 0b0 0b0

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

234

Chapter A15. Distributed Virtual Memory messages
A15.4. Transporting DVM messages

The mappings for Branch Predictor Invalidate and Sync messages are shown in Table A15.21.

Table A15.21: Field mappings for BPI and Sync messages

Signal BPI all or Sync BPI by VA 1st part BPI by VA 2nd part

ACADDR[51] 0b0 0b0 0b0

ACADDR[50] 0b0 0b0 0b0

ACADDR[49] 0b0 0b0 0b0

ACADDR[48] 0b0 0b0 0b0

ACADDR[47] 0b0 VA[56] VA[52]

ACADDR[46] 0b0 VA[55] VA[51]

ACADDR[45] 0b0 VA[54] VA[50]

ACADDR[44] 0b0 VA[53] VA[49]

ACADDR[43] 0b0 VA[48] VA[44]

ACADDR[42] 0b0 VA[47] VA[43]

ACADDR[41] 0b0 VA[46] VA[42]

ACADDR[40] 0b0 VA[45] VA[41]

ACADDR[39] 0b0 0b0 VA[39]

ACADDR[38] 0b0 0b0 VA[38]

ACADDR[37] 0b0 0b0 VA[37]

ACADDR[36] 0b0 0b0 VA[36]

ACADDR[35] 0b0 0b0 VA[35]

ACADDR[34] 0b0 0b0 VA[34]

ACADDR[33] 0b0 0b0 VA[33]

ACADDR[32] 0b0 0b0 VA[32]

ACADDR[31] 0b0 0b0 VA[31]

ACADDR[30] 0b0 0b0 VA[30]

ACADDR[29] 0b0 0b0 VA[29]

ACADDR[28] 0b0 0b0 VA[28]

ACADDR[27] 0b0 0b0 VA[27]

ACADDR[26] 0b0 0b0 VA[26]

ACADDR[25] 0b0 0b0 VA[25]

ACADDR[24] 0b0 0b0 VA[24]

ACADDR[23] 0b0 0b0 VA[23]

ACADDR[22] 0b0 0b0 VA[22]

ACADDR[21] 0b0 0b0 VA[21]

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

235

Chapter A15. Distributed Virtual Memory messages
A15.4. Transporting DVM messages

Table A15.21 – Continued from previous page

Signal BPI all or Sync BPI by VA 1st part BPI by VA 2nd part

ACADDR[20] 0b0 0b0 VA[20]

ACADDR[19] 0b0 0b0 VA[19]

ACADDR[18] 0b0 0b0 VA[18]

ACADDR[17] 0b0 0b0 VA[17]

ACADDR[16] 0b0 0b0 VA[16]

ACADDR[15] Completion 0b0 (Completion) VA[15]

ACADDR[14] DVMType[2] 0b0 (DVMType[2]) VA[14]

ACADDR[13] DVMType[1] 0b0 (DVMType[1]) VA[13]

ACADDR[12] DVMType[0] 0b1 (DVMType[0]) VA[12]

ACADDR[11] 0b0 (Exception[1]) 0b0 (Exception[1]) VA[11]

ACADDR[10] 0b0 (Exception[0]) 0b0 (Exception[0]) VA[10]

ACADDR[9] 0b0 (Security[1]) 0b0 (Security[1]) VA[9]

ACADDR[8] 0b0 (Security[0]) 0b0 (Security[0]) VA[8]

ACADDR[7] 0b0 (Range) 0b0 (Range) VA[7]

ACADDR[6] 0b0 (VMIDV) 0b0 (VMIDV) VA[6]

ACADDR[5] 0b0 (ASIDV) 0b0 (ASIDV) VA[5]

ACADDR[4] 0b0 (Leaf) 0b0 (Leaf) VA[4]

ACADDR[3] 0b0 (Stage[1]) 0b0 (Stage[1]) VA[40]

ACADDR[2] 0b0 (Stage[0]) 0b0 (Stage[0]) 0b0

ACADDR[1] 0b0 0b0 0b0

ACADDR[0] 0b0 (Addr) 0b1 (Addr) 0b0

ACVMIDEXT[3] 0b0 0b0 0b0

ACVMIDEXT[2] 0b0 0b0 0b0

ACVMIDEXT[1] 0b0 0b0 0b0

ACVMIDEXT[0] 0b0 0b0 0b0

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

236

Chapter A15. Distributed Virtual Memory messages
A15.4. Transporting DVM messages

The mappings for Instruction Cache Invalidation messages are shown in Table A15.22.

Table A15.22: Field mappings for VICI and PICI messages

Signal VICI all VICI by VA 1st
part

VICI by VA 2nd
part

PICI 1st part PICI 2nd part

ACADDR[51] 0b0 0b0 0b0 0b0 PA[51]

ACADDR[50] 0b0 0b0 0b0 0b0 PA[50]

ACADDR[49] 0b0 0b0 0b0 0b0 PA[49]

ACADDR[48] 0b0 0b0 0b0 0b0 PA[48]

ACADDR[47] 0b0 VA[56] VA[52] 0b0 PA[47]

ACADDR[46] 0b0 VA[55] VA[51] 0b0 PA[46]

ACADDR[45] 0b0 VA[54] VA[50] 0b0 PA[45]

ACADDR[44] 0b0 VA[53] VA[49] 0b0 PA[44]

ACADDR[43] VMID[15] VA[48] VA[44] 0b0 PA[43]

ACADDR[42] VMID[14] VA[47] VA[43] 0b0 PA[42]

ACADDR[41] VMID[13] VA[46] VA[42] 0b0 PA[41]

ACADDR[40] VMID[12] VA[45] VA[41] 0b0 PA[40]

ACADDR[39] ASID[15] ASID[15] VA[39] 0b0 PA[39]

ACADDR[38] ASID[14] ASID[14] VA[38] 0b0 PA[38]

ACADDR[37] ASID[13] ASID[13] VA[37] 0b0 PA[37]

ACADDR[36] ASID[12] ASID[12] VA[36] 0b0 PA[36]

ACADDR[35] ASID[11] ASID[11] VA[35] 0b0 PA[35]

ACADDR[34] ASID[10] ASID[10] VA[34] 0b0 PA[34]

ACADDR[33] ASID[9] ASID[9] VA[33] 0b0 PA[33]

ACADDR[32] ASID[8] ASID[8] VA[32] 0b0 PA[32]

ACADDR[31] VMID[7] VMID[7] VA[31] VI[27] PA[31]

ACADDR[30] VMID[6] VMID[6] VA[30] VI[26] PA[30]

ACADDR[29] VMID[5] VMID[5] VA[29] VI[25] PA[29]

ACADDR[28] VMID[4] VMID[4] VA[28] VI[24] PA[28]

ACADDR[27] VMID[3] VMID[3] VA[27] VI[23] PA[27]

ACADDR[26] VMID[2] VMID[2] VA[26] VI[22] PA[26]

ACADDR[25] VMID[1] VMID[1] VA[25] VI[21] PA[25]

ACADDR[24] VMID[0] VMID[0] VA[24] VI[20] PA[24]

ACADDR[23] ASID[7] ASID[7] VA[23] VI[19] PA[23]

ACADDR[22] ASID[6] ASID[6] VA[22] VI[18] PA[22]

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

237

Chapter A15. Distributed Virtual Memory messages
A15.4. Transporting DVM messages

Table A15.22 – Continued from previous page

Signal VICI all VICI by VA 1st
part

VICI by VA 2nd
part

PICI 1st part PICI 2nd part

ACADDR[21] ASID[5] ASID[5] VA[21] VI[17] PA[21]

ACADDR[20] ASID[4] ASID[4] VA[20] VI[16] PA[20]

ACADDR[19] ASID[3] ASID[3] VA[19] VI[15] PA[19]

ACADDR[18] ASID[2] ASID[2] VA[18] VI[14] PA[18]

ACADDR[17] ASID[1] ASID[1] VA[17] VI[13] PA[17]

ACADDR[16] ASID[0] ASID[0] VA[16] VI[12] PA[16]

ACADDR[15] 0b0
(Completion)

0b0
(Completion)

VA[15] 0b0
(Completion)

PA[15]

ACADDR[14] 0b0
(DVMType[2])

0b0
(DVMType[2])

VA[14] 0b0
(DVMType[2])

PA[14]

ACADDR[13] 0b1
(DVMType[1])

0b1
(DVMType[1])

VA[13] 0b1
(DVMType[1])

PA[13]

ACADDR[12] 0b1
(DVMType[0])

0b1
(DVMType[0])

VA[12] 0b0
(DVMType[0])

PA[12]

ACADDR[11] Exception[1] Exception[1] VA[11] 0b0
(Exception[1])

PA[11]

ACADDR[10] Exception[0] Exception[0] VA[10] 0b0
(Exception[0])

PA[10]

ACADDR[9] Security[1] Security[1] VA[9] Security[1] PA[9]

ACADDR[8] Security[0] Security[0] VA[8] Security[0] PA[8]

ACADDR[7] 0b0 (Range) 0b0 (Range) VA[7] 0b0 (Range) PA[7]

ACADDR[6] VMIDV VMIDV VA[6] VIV[1] PA[6]

ACADDR[5] ASIDV ASIDV VA[5] VIV[0] PA[5]

ACADDR[4] 0b0 (Leaf) 0b0 (Leaf) VA[4] 0b0 PA[4]

ACADDR[3] 0b0 (Stage[1]) 0b0 (Stage[1]) VA[40] 0b0 0b0

ACADDR[2] 0b0 (Stage[0]) 0b0 (Stage[0]) 0b0 0b0 0b0

ACADDR[1] 0b0 0b0 0b0 0b0 0b0

ACADDR[0] 0b0 (Addr) 0b1 (Addr) 0b0 Addr 0b0

ACVMIDEXT[3] VMID[11] VMID[11] VMID[15] 0b0 0b0

ACVMIDEXT[2] VMID[10] VMID[10] VMID[14] 0b0 0b0

ACVMIDEXT[1] VMID[9] VMID[9] VMID[13] 0b0 0b0

ACVMIDEXT[0] VMID[8] VMID[8] VMID[12] 0b0 0b0

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

238

Chapter A15. Distributed Virtual Memory messages
A15.5. DVM Sync and Complete

A15.5 DVM Sync and Complete

A DVM Sync message is used when the requester needs to know when all previous invalidations are complete.

A DVM Complete request is sent when a component has received a DVM Sync message and all preceding
invalidation operations are complete. The following rules apply in determining when an operation is complete:

TLB Invalidate

Complete when a Manager can no longer use an invalidated translation and all previous transactions
that could have used an invalidated translation are complete.

Branch Predictor Invalidate

Complete when cached copies of predicted instruction fetches have been invalidated and can no longer
be accessed by the associated Manager. The invalidated cached copies might be from any virtual
address or from a specified virtual address.

Instruction Cache Invalidate

Complete when cached instructions have been invalidated and can no longer be accessed by the
associated Manager.

The synchronization flow between an interconnect and one receiving Manager is shown in Figure A15.3.

The process is:

1. The Manager acknowledges receipt of the DVM Sync message using the snoop response (CR) channel. This
response must not be dependent on the forward progress of any transactions on the AR or AW channels.

2. The Manager must issue a DVM Complete request on the AR channel when it has completed all the
necessary actions. This must be after the handshake of the associated DVM Sync on the snoop request
channel of the same Manager. The Manager must send a DVM Complete in a timely manner, even if it
continues to receive more DVM invalidation operations and more DVM Sync messages.

3. The interconnect component responds to the DVM Complete request using the read data (R) channel of the
component that issued the DVM Complete. Read data is not valid in this response.

Interconnect
(Subordinate Interface)

Receiving
Manager

DVM Sync request

response

DVM Complete request

response

AC

CR

AR

R

Figure A15.3: DVM Synchronization flow

A DVM Complete request is signaled on the AR channel, Table A15.23 shows the constraints on other AR channel
signals if they are present.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

239

Chapter A15. Distributed Virtual Memory messages
A15.5. DVM Sync and Complete

Table A15.23: DVM Complete request constraints

Signal Constraint

ARSNOOP Must be 0b1110.

ARADDR Must be zero.

ARID Must be different from that of any outstanding, non-DVM
Complete transaction on the read channels.

ARBURST Must be INCR (0b01).

ARLEN Must be 1 transfer (0x00).

ARSIZE Must be equal to the data channel width.

ARDOMAIN Must be Shareable (0b01 or 0b10).

ARCACHE Must be Modifiable, Non-cacheable (0b0010).

ARCHUNKEN Must be 0b0.

ARMMUVALID Must be 0b0.

ARMMUATST Must be 0b0.

ARMMUFLOW Must be 0b00.

ARTAGOP Must be 0b00.

ARLOCK Must be 0b0.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

240

Chapter A15. Distributed Virtual Memory messages
A15.6. Coherency Connection signaling

A15.6 Coherency Connection signaling

DVM message requests are transferred from a Subordinate to a Manager interface, which is the opposite direction
to other requests. A Manager which is idle might be powered down and unable to accept any DVM requests.
Coherency Connection signaling can be used to enable a Manager to control whether it receives DVM message
requests.

The Coherency_Connection_Signals property is used to indicate whether a component supports the Coherency
Connection signals.

Table A15.24: Coherency_Connection_Signals property

Coherency_Connection_Signals Default Description

True Coherency Connection signaling is supported.

False Y Coherency Connection signaling is not supported.

When Coherency_Connection_Signals is True, the following signals are included on an interface.

Table A15.25: Coherency Connection signals

Name Width Default Description

SYSCOREQ 1 - Output from a Manager, asserted HIGH to request
that it receives DVM messages on the AC channel.

SYSCOACK 1 - Output from a Subordinate, asserted HIGH to
acknowledge that the attached Manager might
receive DVM messages on the AC channel.

Coherency Connection signals do not have default values, so connected interfaces must both support or not
support Coherency Connection signaling.

The Coherency Connection signals use a four-phase scheme which can safely cross clock domains.

Disconnecting from DVM messages is typically used before entering a low-power state in which DVM requests
cannot be processed.

A15.6.1 Coherency Connection Handshake

SYSCOREQ and SYSCOACK must be deasserted when ARESETn is asserted. When not in reset, the
following requests are permitted:

• A Manager requests to receive DVM messages by asserting SYSCOREQ HIGH. The interconnect indicates
that DVM messages are enabled by asserting SYSCOACK HIGH.

• The Manager requests to stop receiving DVM messages by deasserting SYSCOREQ LOW. The
interconnect indicates that DVM messages is disabled by deasserting SYSCOACK LOW.

The handshake timing is shown in Figure A15.4.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

241

Chapter A15. Distributed Virtual Memory messages
A15.6. Coherency Connection signaling

ACLK

ARESETn

SYSCOREQ

SYSCOACK

Disabled Connect Enabled Disconnect Disabled

a c

b d

Figure A15.4: Coherency Connection handshake timing

The connection signaling obeys the four-phase handshake rules:

• A Manager can only change SYSCOREQ when SYSCOACK is at the same level.

• A Subordinate can only change SYSCOACK when SYSCOREQ is at the opposite level.

The rules for Managers and Subordinate components in each state are shown in Table A15.26.

Table A15.26: Coherency Connection signaling states

State SYSCOREQ SYSCOACK Rules

Disabled 0 0 Manager:
• Must not fetch and use DVM-managed translation table

data to perform translations.
• Asserts SYSCOREQ if it needs to perform DVM-managed

translations.
Subordinate:

• Must not issue any DVM message requests.
• Must not issue any DVM Sync requests, these are assumed

to complete immediately.

Connect 1 0 Manager:
• Must not fetch and use DVM-managed translation table

data to perform translations.
• Must be able to receive and respond to DVM message

requests.
• Waiting for SYSCOACK to be asserted before using

DVM-managed translations.
Subordinate:

• Asserts SYSCOACK when it has enabled DVM messages
to the attached Manager.

Enabled 1 1 Manager:
• Can fetch and use DVM-managed translation table data.
• Must be able to receive and respond to DVM message

requests.
• Deasserts SYSCOREQ if it has finished using

DVM-managed translation table data and wants to enter a
low power state. Any transaction using previously fetched
data must have been completed.

Subordinate:
• Can send DVM messages to the attached Manager.

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

242

Chapter A15. Distributed Virtual Memory messages
A15.6. Coherency Connection signaling

Table A15.26 – Continued from previous page

State SYSCOREQ SYSCOACK Rules

Disconnect 0 1 Manager:
• Must not fetch or use any DVM-managed translation table

data.
• Must be able to receive and respond to DVM message

requests.
• Waiting for SYSCOACK to be deasserted before disabling

DVM-managed logic.
Subordinate:

• Must wait for all outstanding DVM messages to receive a
response before deasserting SYSCOACK.

• Must not issue any new DVM messages.
• Must issue the second part of a 2-part DVM message if the

first part has already been issued.

If an interconnect has sent a DVM Sync message that requires a DVM Complete message on the AR channel, then
the interconnect is permitted to deassert SYSCOACK before the DVM Complete request is received. The
Manager is required to send the DVM Complete request on the AR channel, even when DVM messages are
disabled.

Transitions on the Coherency Connection signals might rely on AWAKEUP being asserted, see A16.2.1
AWAKEUP and Coherency Connection signaling for details.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

243

Chapter A16
Wake-up signaling

This chapter introduces the wake-up signals for the AXI protocol.

It contains the following sections:

• A16.1 About Wake-up signals

• A16.2 AWAKEUP rules and recommendations

• A16.3 ACWAKEUP rules and recommendations

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

244

Chapter A16. Wake-up signaling
A16.1. About Wake-up signals

A16.1 About Wake-up signals

The wake-up signals are an optional feature that can be used to indicate that there is activity associated with the
interface.

Table A16.1: Wake-up signals

Name Width Default Description

AWAKEUP 1 - Manager output, asserted HIGH to indicate there
might be activity on the read and write request
channels.

ACWAKEUP 1 - Subordinate output, asserted HIGH to indicate
there might be activity on the snoop request
channel.

The signals can be routed to a clock controller or similar component to enable power and clocks to the connected
components.

The wake-up signals are synchronous and must also be suitable for sampling asynchronously in a different clock
domain. This requires the wake-up signals to be glitch-free, which can be achieved by for example being
generated directly from a register, or from a glitch-free OR tree.

The wake-up signals must be asserted to guarantee that a transaction can be accepted, but once the transaction is in
progress the assertion or deassertion of the wake-up signal is IMPLEMENTATION DEFINED.

It is recommended, but not required that a wake-up signal is deasserted when no further transactions are required.

The Wakeup_Signals property is used to indicate whether a component includes wake-up signaling.

Table A16.2: Wakeup_Signals property

Wakeup_Signals Default Description

True AWAKEUP is present. ACWAKEUP is present if
the interface has an AC channel.

False Y No wake-up signals are present.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

245

Chapter A16. Wake-up signaling
A16.2. AWAKEUP rules and recommendations

A16.2 AWAKEUP rules and recommendations

AWAKEUP is an output signal from a Manager interface and is asserted at the start of a transaction to indicate
that there is a transaction to be processed. It has the following rules:

• It is recommended that AWAKEUP is asserted at least one cycle before the assertion of ARVALID,
AWVALID, or WVALID to prevent the acceptance of a transaction request being delayed.

• It is permitted for AWAKEUP to be asserted at any point before or after the assertion of ARVALID,
AWVALID, or WVALID.

• A Subordinate is permitted to wait for AWAKEUP to be asserted before asserting ARREADY,
AWREADY, or WREADY.

• If AWAKEUP is asserted in a cycle where AWVALID is asserted and AWREADY is deasserted, then
AWAKEUP must remain asserted until AWREADY is asserted.

• If AWAKEUP is asserted in a cycle when ARVALID is asserted and ARREADY is deasserted, then
AWAKEUP must remain asserted until ARREADY is asserted.

• After the ARVALID, ARREADY handshake, or the AWVALID, AWREADY handshake, the interconnect
must remain active until the transaction has completed.

• It is permitted, but not recommended, to assert AWAKEUP then deassert it without a transaction taking
place.

There is no requirement relating to the assertion of AWAKEUP relative to WVALID. However, for components
that can assert WVALID before AWVALID, the assertion of AWAKEUP at least one cycle before WVALID can
prevent the acceptance of a new transaction being delayed.

If a Subordinate has an AWAKEUP input but the attached Manager does not have an AWAKEUP output, then
either:

• Tie AWAKEUP high, however this might prevent the Subordinate interface from using low-power states.

• Derive AWAKEUP from AxVALID and SYSCOREQ/ACK. This method enables the Subordinate to use
low-power states, but might introduce latency while the clock is enabled.

A16.2.1 AWAKEUP and Coherency Connection signaling

If wake-up and Coherency Connection signals are both present on an interface, there are additional considerations.

• It is required that the AWAKEUP signal is asserted to guarantee progress of a transition on the Coherency
Connection signaling.

• It is permitted for AWAKEUP to be asserted at any point before or after the assertion of SYSCOREQ.
However, it is required to be asserted to guarantee the corresponding assertion of SYSCOACK. When
AWAKEUP is asserted with SYSCOREQ asserted and SYSCOACK deasserted, it must remain asserted
until SYSCOACK is asserted.

• It is permitted for AWAKEUP to be asserted at any point before or after the deassertion of SYSCOREQ.
However, it is required to be asserted to guarantee the corresponding deassertion of SYSCOACK. When
AWAKEUP is asserted with SYSCOREQ deasserted and SYSCOACK asserted, it must remain asserted
until SYSCOACK is deasserted.

See A15.6 Coherency Connection signaling for more details.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

246

Chapter A16. Wake-up signaling
A16.3. ACWAKEUP rules and recommendations

A16.3 ACWAKEUP rules and recommendations

ACWAKEUP is an output signal from a Subordinate interface, usually on an interconnect, and is asserted at the
start of a DVM message transaction to indicate that there is a transaction to be processed. It has the following rules:

• It is recommended that ACWAKEUP is asserted at least one cycle before the assertion of ACVALID to
prevent the acceptance of a DVM request being delayed.

• ACWAKEUP must remain asserted until the associated ACVALID / ACREADY handshake to ensure
progress of the DVM transaction.

• After the ACVALID / ACREADY handshake, the Manager must remain active until the DVM transaction
has completed.

• It is permitted for ACWAKEUP to be asserted at any point before or after the assertion of ACVALID.

• It is permitted, but not recommended, to assert ACWAKEUP and then deassert it without ACVALID being
asserted.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

247

Chapter A17
Interface and data protection

This chapter specifies schemes for the protection of data and interfaces using poison and parity signaling.

It contains the following sections:

• A17.1 Data protection using Poison

• A17.2 Parity protection for data and interface signals

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

248

Chapter A17. Interface and data protection
A17.1. Data protection using Poison

A17.1 Data protection using Poison

Poison signaling is used to indicate that a set of data bytes has been previously corrupted. Passing the Poison
signaling alongside the data permits any future user of the data to be notified that the data might be corrupt. Poison
signaling is supported at the granularity of 1 bit for every 64 bits of data.

Table A17.1: Poison signals

Name Width Default Description

WPOISON,
RPOISON

ceil(DATA_WIDTH / 64) - Asserted high to indicates that the data in this transfer
is corrupted. There is one bit per 64-bits of data.

The presence of Poison signals is configured using the Poison property.

Table A17.2: Poison property

Poison Default Description

True Poison signaling is supported.

False Y Poison signaling is not supported.

The validity of the Poison signaling is identical to the validity of the associated data.

Poison signaling is independent of error response signaling:

• It is permitted to signal an error with no Poison violation.

• It is permitted to signal a Poison violation without signaling an error response.

A 64-bit granule is defined to be an 8-byte address range that is aligned to an 8-byte boundary.

Where the transaction size, as indicated by AxSIZE, is less than 64-bits then it is permitted for the Poison bit to be
different on each data transfer. In this situation the receiving component must examine all data transfers to
determine if the 64-bit granule is poisoned.

Poison bits can be set for data lanes that are invalid for a transfer. For example, a 64-bit transfer on a 128-bit
channel can have both Poison bits set.

For implications of Poison with MTE Tags, see A13.2.10 MTE and Poison.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

249

Chapter A17. Interface and data protection
A17.2. Parity protection for data and interface signals

A17.2 Parity protection for data and interface signals

For safety-critical applications it is necessary to detect and possibly correct, transient and functional errors on
individual wires within an SoC.

An error in a system component can propagate and cause multiple errors within connected components. Error
detection and correction (EDC) is required to operate end-to-end, covering all logic and wires from source to
destination.

One way to implement end-to-end protection, is to employ customized EDC schemes in components and
implement a simple error detection scheme between components. Between these components there is no logic and
single bit errors do not propagate to multi-bit errors. This section describes a parity scheme for detecting single-bit
errors on the AMBA interface between components. Multi-bit errors can be detected if they occur in different
parity signal groups. Figure A17.1 shows locations where parity can be used in AMBA.

Source Destination

Short distance wiring

Long distance wiring
and routing logic

Parity generation Parity check and
EDC generation

EDC check and
Parity generation

Parity check

AMBA

Parity

AMBA

Parity

Interconnect

EDC code

Figure A17.1: Parity use in AMBA

A17.2.1 Configuration of parity protection

The protection scheme employed on an interface is defined by the property Check_Type.

Table A17.3: Check_Type property

Check_Type Default Description

Odd_Parity_Byte_All Odd parity checking included for all signals. Each bit of
the parity signal generally covers up to 8 bits. However, a
parity bit can cover more than 8 bits if the configuration
requires it.

Odd_Parity_Byte_Data Odd parity checking included for data signals with names
that end in DATA. Each bit of the parity signal covers
exactly 8 bits.

False Y No checking signals on the interface.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

250

Chapter A17. Interface and data protection
A17.2. Parity protection for data and interface signals

A17.2.2 Error detection behavior

This specification is not prescriptive regarding component or system behavior when a parity error is detected.
Depending on the system and affected signals, a flipped bit can have a wide range of effects. It might be harmless,
cause performance issues, data corruption, security violations, or deadlock. The transaction response is
independent of parity error detection.

When an error is detected, the receiver can do any of the following:

• Terminate or propagate the transaction. Termination might or might not be protocol-compliant.

• Correct the parity check signal or propagate the signal in error.

• Update its memory or leave untouched. The location might be marked as poisoned.

• Signal an error response through other means, for example with an interrupt.

A17.2.3 Parity check signals

The parity check signals are listed in Table A17.4. They have the following attributes and rules:

• Odd parity is used.

Odd parity means that check signals are added to groups of signals on the interface and driven such that
there is always an odd number of asserted bits in that group.

• Parity signals covering data and payload are defined such that in most cases, there are no more than 8 bits per
group.

This limitation assumes that there is a maximum of 3 logic levels available in the timing budget for
generating each parity bit.

• Parity signals covering critical control signals, which are likely to have a smaller timing budget available, are
defined with a single odd parity bit. This single odd parity bit is the inversion of the original critical control
signal.

• For a check signal that is wider than 1 bit:

– Where a check signal covers multiple signals, parity is calculated by concatenating the signals in the
order they are listed in Table A17.4, with the first signal listed at the LSB.

– Check bit [n] corresponds to bits [(8n+7):8n] in the payload, with the following exceptions:

* WTAGCHK[n] is the parity of {WTAGUPDATE[n],WTAG[4n+3:4n]}.

* RTAGCHK[n] is the parity of RTAG[4n+3:4n].

– If the payload is not an integer number of bytes, the most significant bit of the check signal covers fewer
than 8-bits in the most significant portion of the payload.

• Check signals are synchronous to ACLK and must be driven correctly in every cycle that the signal in the
Check enable column is HIGH, see Table A17.4.

• Parity signals must be driven appropriate to all the bits in the associated payload, irrespective of whether
those bits are actively used in the transfer. For example, all bits of WDATACHK must be driven correctly
when WVALID is asserted, even if some byte lanes are not being used.

• If none of the signals covered by a check signal are present on an interface, then the check signal is omitted
from the interface.

The following rules apply for CHK signals which cover multiple signals where one or more of the inputs or
outputs are missing:

• If there is a missing signal output, the value is assumed to be the default for that signal.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

251

Chapter A17. Interface and data protection
A17.2. Parity protection for data and interface signals

• If there is an output signal with no corresponding input, the missing input cannot be assumed to take a fixed
value. Therefore, the CHK signal cannot be used reliably.

• It is recommended that input signals that are part of a CHK group are either all present or all not present.

Table A17.4: Parity check signals

Name Signals covered Width Check enable

AWVALIDCHK AWVALID 1 ARESETn

AWREADYCHK AWREADY 1 ARESETn

AWIDCHK AWID
AWIDUNQ

ceil((ID_W_WIDTH +
int(Unique_ID_Support))/8)

AWVALID

AWADDRCHK AWADDR ceil(ADDR_WIDTH/8) AWVALID

AWLENCHK AWLEN 1 AWVALID

AWCTLCHK0 AWSIZE
AWBURST
AWLOCK
AWPROT
AWNSE

1 AWVALID

AWCTLCHK1 AWREGION
AWCACHE
AWQOS

1 AWVALID

AWCTLCHK2 AWDOMAIN
AWSNOOP

1 AWVALID

AWCTLCHK3 AWATOP
AWCMO
AWTAGOP

1 AWVALID

AWUSERCHK AWUSER ceil(USER_REQ_WIDTH/8) AWVALID

AWSTASHNIDCHK AWSTASHNID
AWSTASHNIDEN

1 AWVALID

AWSTASHLPIDCHK AWSTASHLPID
AWSTASHLPIDEN

1 AWVALID

AWTRACECHK AWTRACE 1 AWVALID

AWLOOPCHK AWLOOP ceil(LOOP_W_WIDTH/8) AWVALID

AWMMUCHK AWMMUATST
AWMMUFLOW
AWMMUSECSID
AWMMUSSIDV
AWMMUVALID

1 AWVALID

AWMMUSIDCHK AWMMUSID ceil(SID_WIDTH/8) AWVALID

AWMMUSSIDCHK AWMMUSSID ceil(SSID_WIDTH/8) AWVALID

AWPBHACHK AWPBHA 1 AWVALID

AWNSAIDCHK AWNSAID 1 AWVALID

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

252

Chapter A17. Interface and data protection
A17.2. Parity protection for data and interface signals

Table A17.4 – Continued from previous page

Name Signals covered Width Check enable

AWMPAMCHK AWMPAM 1 AWVALID

AWSUBSYSIDCHK AWSUBSYSID 1 AWVALID

AWMECIDCHK AWMECID ceil(MECID_WIDTH/8) AWVALID

WVALIDCHK WVALID 1 ARESETn

WREADYCHK WREADY 1 ARESETn

WDATACHK WDATA DATA_WIDTH/8 WVALID

WSTRBCHK WSTRB ceil(DATA_WIDTH/64) WVALID

WTAGCHK WTAG
WTAGUPDATE

ceil(DATA_WIDTH/128) WVALID

WLASTCHK WLAST 1 WVALID

WUSERCHK WUSER ceil(USER_DATA_WIDTH/8) WVALID

WPOISONCHK WPOISON ceil(DATA_WIDTH/512) WVALID

WTRACECHK WTRACE 1 WVALID

BVALIDCHK BVALID 1 ARESETn

BREADYCHK BREADY 1 ARESETn

BIDCHK BID
BIDUNQ

ceil((ID_W_WIDTH +
int(Unique_ID_Support))/8)

BVALID

BRESPCHK BRESP
BCOMP
BPERSIST
BTAGMATCH
BBUSY

1 BVALID

BUSERCHK BUSER ceil(USER_RESP_WIDTH/8) BVALID

BTRACECHK BTRACE 1 BVALID

BLOOPCHK BLOOP ceil(LOOP_W_WIDTH/8) BVALID

ARVALIDCHK ARVALID 1 ARESETn

ARREADYCHK ARREADY 1 ARESETn

ARIDCHK ARID
ARIDUNQ

ceil((ID_R_WIDTH +
int(Unique_ID_Support))/8)

ARVALID

ARADDRCHK ARADDR ceil(ADDR_WIDTH/8) ARVALID

ARLENCHK ARLEN 1 ARVALID

ARCTLCHK0 ARSIZE
ARBURST
ARLOCK
ARPROT
ARNSE

1 ARVALID

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

253

Chapter A17. Interface and data protection
A17.2. Parity protection for data and interface signals

Table A17.4 – Continued from previous page

Name Signals covered Width Check enable

ARCTLCHK1 ARREGION
ARCACHE
ARQOS

1 ARVALID

ARCTLCHK2 ARDOMAIN
ARSNOOP

1 ARVALID

ARCTLCHK3 ARCHUNKEN
ARTAGOP

1 ARVALID

ARUSERCHK ARUSER ceil(USER_REQ_WIDTH/8) ARVALID

ARTRACECHK ARTRACE 1 ARVALID

ARLOOPCHK ARLOOP ceil(LOOP_R_WIDTH/8) ARVALID

ARMMUCHK ARMMUATST
ARMMUFLOW
ARMMUSECSID
ARMMUSSIDV
ARMMUVALID

1 ARVALID

ARMMUSIDCHK ARMMUSID ceil(SID_WIDTH/8) ARVALID

ARMMUSSIDCHK ARMMUSSID ceil(SSID_WIDTH/8) ARVALID

ARNSAIDCHK ARNSAID 1 ARVALID

ARMPAMCHK ARMPAM 1 ARVALID

ARPBHACHK ARPBHA 1 ARVALID

ARSUBSYSIDCHK ARSUBSYSID 1 ARVALID

ARMECIDCHK ARMECID ceil(MECID_WIDTH/8) ARVALID

RVALIDCHK RVALID 1 ARESETn

RREADYCHK RREADY 1 ARESETn

RIDCHK RID
RIDUNQ

ceil((ID_R_WIDTH +
int(Unique_ID_Support))/8)

RVALID

RDATACHK RDATA DATA_WIDTH/8 RVALID

RTAGCHK RTAG ceil(DATA_WIDTH/128) RVALID

RRESPCHK RRESP
RBUSY

1 RVALID

RLASTCHK RLAST 1 RVALID

RCHUNKCHK RCHUNKV
RCHUNKNUM
RCHUNKSTRB

1 RVALID

RUSERCHK RUSER ceil((USER_DATA_WIDTH +
USER_RESP_WIDTH)/8)

RVALID

RPOISONCHK RPOISON ceil(DATA_WIDTH/512) RVALID

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

254

Chapter A17. Interface and data protection
A17.2. Parity protection for data and interface signals

Table A17.4 – Continued from previous page

Name Signals covered Width Check enable

RTRACECHK RTRACE 1 RVALID

RLOOPCHK RLOOP ceil(LOOP_R_WIDTH/8) RVALID

ACVALIDCHK ACVALID 1 ARESETn

ACREADYCHK ACREADY 1 ARESETn

ACADDRCHK ACADDR ceil(ADDR_WIDTH/8) ACVALID

ACVMIDEXTCHK ACVMIDEXT 1 ACVALID

ACTRACECHK ACTRACE 1 ACVALID

CRVALIDCHK CRVALID 1 ARESETn

CRREADYCHK CRREADY 1 ARESETn

CRTRACECHK CRTRACE 1 CRVALID

VAWQOSACCEPTCHK VAWQOSACCEPT 1 ARESETn

VARQOSACCEPTCHK VARQOSACCEPT 1 ARESETn

AWAKEUPCHK AWAKEUP 1 ARESETn

ACWAKEUPCHK ACWAKEUP 1 ARESETn

SYSCOREQCHK SYSCOREQ 1 None

SYSCOACKCHK SYSCOACK 1 None

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

255

Part B
Appendices

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

256

Chapter B1
Interface classes

The specification part in this document describes a generic fully-featured protocol, with some features being
mandatory and others optional, based on properties. Previous issues of this specification defined a number of
interface classes for different use-cases. These can all now be described by constraining certain properties to limit
the functionality and signaling on that interface.

This chapter describes the following interface classes:

• B1.1.1 AXI5

• B1.1.2 ACE5-Lite

• B1.1.3 ACE5-LiteDVM

• B1.1.4 ACE5-LiteACP

• B1.1.5 AXI5-Lite

There are also signal and property tables with columns for each interface class:

• B1.2 Signal matrix

• B1.3 Parity check signal matrix

• B1.4 Property matrix

Note that ACE, ACE5, AXI3, AXI4, and AXI4-Lite interface classes are not described in this specification. See
[1] for more information on these interfaces.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

257

Chapter B1. Interface classes
B1.1. Summary of interface classes

B1.1 Summary of interface classes

An example of where different interface classes might be used is shown in Figure B1.1. Note that an AXI5
interface can be configured to meet all of the use-cases.

Accelerator with
MMU

I/O coherent agent
(translated)

CPU complex

Coherent interconnect

Non-coherent interconnect

AXI5 or ACE5-LiteACP

System cache

Memory

Peripherals

Accelerator
(untranslated)

SMMU

AXI5 or ACE5-LiteAXI5 or ACE5-LiteDVMCHI

AXI5 or ACE5-LiteDVMAXI5 or ACE5-Lite

AXI5 or ACE5-Lite AXI5 or AXI5-Lite

AXI5 or ACE5-Lite

Figure B1.1: Example system topology showing possible interface classes

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

258

Chapter B1. Interface classes
B1.1. Summary of interface classes

B1.1.1 AXI5

The AXI5 interface class is a generic interface with no property constraints.

Compared with Issue H of this specification, the following properties are now permitted to be enabled for an AXI5
interface:

• Shareable_Transactions

• CMO_On_Read

• CMO_On_Write

• Write_Plus_CMO

• WriteZero_Transaction

• Prefetch_Transaction

• Cache_Stash_Transactions

• DVM_Message_Support (Receiver only)

• DVM_v8, DVM_v8.1, DVM_v8.4, DVM_v9.2

• Coherency_Connection_Signals

• DeAllocation_Transactions

• Persist_CMO

B1.1.2 ACE5-Lite

An ACE5-Lite interface was previously needed if an AXI interface included any functionality that required
AxSNOOP signals. With this version of the specification, an AXI5 interface is recommended for new designs as
it now supports all functionality.

B1.1.3 ACE5-LiteDVM

An ACE5-LiteDVM interface was previously needed if an interface was required to send or receive DVM
messages. With this version of the specification, an AXI5 interface is recommended for new designs as it now
supports all functionality.

The most common use-case for an ACE5-LiteDVM interface is for a system MMU to receive invalidation
messages on the AC channel. The issuing of DVM messages on the AR channel is mostly done by fully coherent
CPUs, so is beyond the scope of this specification.

Note that there are some differences between the definition of ACE5-LiteDVM in this specification, compared
with Issue H [1].

In this specification, snoop data transfer and bidirectional DVM messages are not supported. Therefore, the
following signals described in earlier issues of this specification are no longer required on an ACE5-LiteDVM
interface:

• ACSNOOP, all requests on the AC channel can be assumed to be DVM messages.

• ACPROT, not required for DVM messages.

• CRRESP, not required for DVM messages.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

259

Chapter B1. Interface classes
B1.1. Summary of interface classes

B1.1.4 ACE5-LiteACP

ACE5-LiteACP, which is a subset of ACE5-Lite, is intended for tightly coupling accelerator components to a
processor cluster. The interface is optimized for coherent cache line accesses and is less complex than an
ACE5-Lite interface.

The following constraints apply to ACE5-LiteACP in order to reduce complexity.

• Data width must be 128b (DATA_WIDTH = 128).

• Size must be 128b (SIZE_Present = False).

• Length must be 1 or 4 transfers.

• Burst must be INCR (BURST_Present = False).

• Memory type must be Write-back, that is AxCACHE[1:0] is 0b11 and AxCACHE[3:2] is not 0b00.

• Some other optional features are not permitted, as Table B1.4 describes.

B1.1.5 AXI5-Lite

AXI5-Lite is a subset of AXI5 where all transactions have one data transfer. It is intended for communication with
register-based components and simple memories when bursts of data transfer are not advantageous.

The key functionality of AXI5-Lite is:

• All transactions have burst length 1.

• Supported Opcodes are WriteNoSnoop and ReadNoSnoop.

• Reordering of responses is permitted when requests have different IDs.

• All accesses are considered Device Non-bufferable.

• Exclusive accesses are not supported.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

260

Chapter B1. Interface classes
B1.2. Signal matrix

B1.2 Signal matrix

In Table B1.2, there is a list of all signals with codes that describe the presence requirements for each interface
class. The Presence column describes the property condition used to specify the presence of the signal.

The list of codes that are used is shown in Table B1.1.

Table B1.1: Key to signals table

Code Manager interfaces Subordinate interfaces

Y Mandatory Mandatory

YM Mandatory Optional

YS Optional Mandatory

O Optional Optional

NS Optional Not present

N Not present Not present

Table B1.2: Summary of signal presence for each interface class

Signal Presence AXI5 ACE5-
Lite

ACE5-
LiteDVM

ACE5-
LiteACP

AXI5-
Lite

ACLK - Y Y Y Y Y

ARESETn - Y Y Y Y Y

AWVALID - Y Y Y Y Y

AWREADY - Y Y Y Y Y

AWID ID_W_WIDTH > 0 YS YS YS YS YS

AWADDR - Y Y Y Y Y

AWREGION REGION_Present O O O N N

AWLEN LEN_Present YS YS YS YS N

AWSIZE SIZE_Present YS YS YS N O

AWBURST BURST_Present YS YS YS N N

AWLOCK Exclusive_Accesses O O O N N

AWCACHE CACHE_Present O O O O N

AWPROT PROT_Present YM YM YM YM YM

AWNSE RME_Support O O O N N

AWQOS QOS_Present O O O N N

AWUSER USER_REQ_WIDTH > 0 O O O O O

AWDOMAIN Shareable_Transactions O Y Y Y N

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

261

Chapter B1. Interface classes
B1.2. Signal matrix

Table B1.2 – Continued from previous page

Signal Presence AXI5 ACE5-
Lite

ACE5-
LiteDVM

ACE5-
LiteACP

AXI5-
Lite

AWSNOOP AWSNOOP_WIDTH > 0 O YS YS YS N

AWSTASHNID STASHNID_Present O O O O N

AWSTASHNIDEN STASHNID_Present O O O O N

AWSTASHLPID STASHLPID_Present O O O O N

AWSTASHLPIDEN STASHLPID_Present O O O O N

AWTRACE Trace_Signals O O O O O

AWLOOP Loopback_Signals O O O N N

AWMMUVALID Untranslated_Transactions == v3 O O N N N

AWMMUSECSID SECSID_WIDTH > 0 O O N N N

AWMMUSID SID_WIDTH > 0 O O N N N

AWMMUSSIDV SSID_WIDTH > 0 O O N N N

AWMMUSSID SSID_WIDTH > 0 O O N N N

AWMMUATST MMUFLOW_Present and
((Untranslated_Transactions == v1) or
(Untranslated_Transactions == True))

O O N N N

AWMMUFLOW MMUFLOW_Present and
((Untranslated_Transactions == v2) or
(Untranslated_Transactions == v3))

O O N N N

AWPBHA PBHA_Support O O O N N

AWMECID MEC_Support O O O N N

AWNSAID NSAccess_Identifiers O O O N N

AWSUBSYSID SUBSYSID_WIDTH > 0 O O O N O

AWATOP Atomic_Transactions O O O N N

AWMPAM MPAM_Support != False O O O O N

AWIDUNQ Unique_ID_Support O O O O O

AWCMO CMO_On_Write O O O N N

AWTAGOP MTE_Support != False O O O N N

WVALID - Y Y Y Y Y

WREADY - Y Y Y Y Y

WDATA - Y Y Y Y Y

WSTRB WSTRB_Present YS YS YS YS YS

WTAG MTE_Support != False O O O N N

WTAGUPDATE MTE_Support != False O O O N N

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

262

Chapter B1. Interface classes
B1.2. Signal matrix

Table B1.2 – Continued from previous page

Signal Presence AXI5 ACE5-
Lite

ACE5-
LiteDVM

ACE5-
LiteACP

AXI5-
Lite

WLAST WLAST_Present YM YM YM YM N

WUSER USER_DATA_WIDTH > 0 O O O O O

WPOISON Poison O O O O O

WTRACE Trace_Signals O O O O O

BVALID - Y Y Y Y Y

BREADY - Y Y Y Y Y

BID ID_W_WIDTH > 0 YS YS YS YS YS

BIDUNQ Unique_ID_Support O O O O O

BRESP BRESP_WIDTH > 0 O O O O O

BCOMP (Persist_CMO and CMO_On_Write)
or MTE_Support == Standard

O O O N N

BPERSIST Persist_CMO and CMO_On_Write O O O N N

BTAGMATCH MTE_Support == Standard O O N N N

BUSER USER_RESP_WIDTH > 0 O O O O O

BTRACE Trace_Signals O O O O O

BLOOP Loopback_Signals O O O N N

BBUSY Busy_Support O O O N N

ARVALID - Y Y Y Y Y

ARREADY - Y Y Y Y Y

ARID ID_R_WIDTH > 0 YS YS YS YS YS

ARADDR - Y Y Y Y Y

ARREGION REGION_Present O O O N N

ARLEN LEN_Present YS YS YS YS N

ARSIZE SIZE_Present YS YS YS N O

ARBURST BURST_Present YS YS YS N N

ARLOCK Exclusive_Accesses O O O N N

ARCACHE CACHE_Present O O O O N

ARPROT PROT_Present YM YM YM YM YM

ARNSE RME_Support O O O N N

ARQOS QOS_Present O O O N N

ARUSER USER_REQ_WIDTH > 0 O O O O O

ARDOMAIN Shareable_Transactions O Y Y Y N

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

263

Chapter B1. Interface classes
B1.2. Signal matrix

Table B1.2 – Continued from previous page

Signal Presence AXI5 ACE5-
Lite

ACE5-
LiteDVM

ACE5-
LiteACP

AXI5-
Lite

ARSNOOP ARSNOOP_WIDTH > 0 O YS YS O N

ARTRACE Trace_Signals O O O O O

ARLOOP Loopback_Signals O O O N N

ARMMUVALID Untranslated_Transactions == v3 O O N N N

ARMMUSECSID SECSID_WIDTH > 0 O O N N N

ARMMUSID SID_WIDTH > 0 O O N N N

ARMMUSSIDV SSID_WIDTH > 0 O O N N N

ARMMUSSID SSID_WIDTH > 0 O O N N N

ARMMUATST MMUFLOW_Present and
((Untranslated_Transactions == v1) or
(Untranslated_Transactions == True))

O O N N N

ARMMUFLOW MMUFLOW_Present and
((Untranslated_Transactions == v2) or
(Untranslated_Transactions == v3))

O O N N N

ARPBHA PBHA_Support O O O N N

ARMECID MEC_Support O O O N N

ARNSAID NSAccess_Identifiers O O O N N

ARSUBSYSID SUBSYSID_WIDTH > 0 O O O N O

ARMPAM MPAM_Support != False O O O O N

ARCHUNKEN Read_Data_Chunking O O O O N

ARIDUNQ Unique_ID_Support O O O O O

ARTAGOP MTE_Support != False O O O N N

RVALID - Y Y Y Y Y

RREADY - Y Y Y Y Y

RID ID_R_WIDTH > 0 YS YS YS YS YS

RIDUNQ Unique_ID_Support O O O O O

RDATA - Y Y Y Y Y

RTAG MTE_Support != False O O O N N

RRESP RRESP_WIDTH > 0 O O O O O

RLAST RLAST_Present YS YS YS YS N

RUSER USER_DATA_WIDTH > 0 or
USER_RESP_WIDTH > 0

O O O O O

RPOISON Poison O O O O O

RTRACE Trace_Signals O O O O O

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

264

Chapter B1. Interface classes
B1.2. Signal matrix

Table B1.2 – Continued from previous page

Signal Presence AXI5 ACE5-
Lite

ACE5-
LiteDVM

ACE5-
LiteACP

AXI5-
Lite

RLOOP Loopback_Signals O O O N N

RCHUNKV Read_Data_Chunking O O O O N

RCHUNKNUM RCHUNKNUM_WIDTH > 0 O O O O N

RCHUNKSTRB RCHUNKSTRB_WIDTH > 0 O O O O N

RBUSY Busy_Support O O O N N

ACVALID DVM_Message_Support O N Y N N

ACREADY DVM_Message_Support O N Y N N

ACADDR DVM_Message_Support O N Y N N

ACVMIDEXT DVM_Message_Support and
(DVM_v8.1 or DVM_v8.4 or
DVM_v9.2)

O N O N N

ACTRACE DVM_Message_Support and
Trace_Signals

O N O N N

CRVALID DVM_Message_Support O N Y N N

CRREADY DVM_Message_Support O N Y N N

CRTRACE DVM_Message_Support and
Trace_Signals

O N O N N

AWAKEUP Wakeup_Signals O O O O O

ACWAKEUP Wakeup_Signals and
DVM_Message_Support

O N O N N

VARQOSACCEPT QoS_Accept O O O N N

VAWQOSACCEPT QoS_Accept O O O N N

SYSCOREQ Coherency_Connection_Signals O N O N N

SYSCOACK Coherency_Connection_Signals O N O N N

BROADCASTATOMIC - NS NS NS N N

BROADCASTSHAREABLE - NS NS NS NS N

BROADCASTCACHEMAINT - NS NS NS N N

BROADCASTCMOPOPA - NS NS NS N N

BROADCASTPERSIST - NS NS NS N N

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

265

Chapter B1. Interface classes
B1.3. Parity check signal matrix

B1.3 Parity check signal matrix

Parity check signals for each interface type are shown in Table B1.3, using the codes defined in Table B1.1. Parity
check signals are described in A17.2.3 Parity check signals.

Table B1.3: Summary of check signal presence for each interface class

Signal AXI5 ACE5-
Lite

ACE5-
LiteDVM

ACE5-
LiteACP

AXI5-
Lite

AWVALIDCHK O O O O O

AWREADYCHK O O O O O

AWIDCHK O O O O O

AWADDRCHK O O O O O

AWLENCHK O O O O N

AWCTLCHK0 O O O O O

AWCTLCHK1 O O O O N

AWCTLCHK2 O O O O N

AWCTLCHK3 O O O N N

AWUSERCHK O O O O O

AWSTASHNIDCHK O O O O N

AWSTASHLPIDCHK O O O O N

AWTRACECHK O O O O O

AWLOOPCHK O O O N N

AWMMUCHK O O N N N

AWMMUSIDCHK O O N N N

AWMMUSSIDCHK O O N N N

AWPBHACHK O O O N N

AWNSAIDCHK O O O N N

AWMPAMCHK O O O O N

AWSUBSYSIDCHK O O O N O

AWMECIDCHK O O O N N

WVALIDCHK O O O O O

WREADYCHK O O O O O

WDATACHK O O O O O

WSTRBCHK O O O O O

WTAGCHK O O O N N

WLASTCHK O O O O N

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

266

Chapter B1. Interface classes
B1.3. Parity check signal matrix

Table B1.3 – Continued from previous page

Signal AXI5 ACE5-
Lite

ACE5-
LiteDVM

ACE5-
LiteACP

AXI5-
Lite

WUSERCHK O O O O O

WPOISONCHK O O O O O

WTRACECHK O O O O O

BVALIDCHK O O O O O

BREADYCHK O O O O O

BIDCHK O O O O O

BRESPCHK O O O O O

BUSERCHK O O O O O

BTRACECHK O O O O O

BLOOPCHK O O O N N

ARVALIDCHK O O O O O

ARREADYCHK O O O O O

ARIDCHK O O O O O

ARADDRCHK O O O O O

ARLENCHK O O O O N

ARCTLCHK0 O O O O O

ARCTLCHK1 O O O O N

ARCTLCHK2 O O O O N

ARCTLCHK3 O O O O N

ARUSERCHK O O O O O

ARTRACECHK O O O O O

ARLOOPCHK O O O N N

ARMMUCHK O O N N N

ARMMUSIDCHK O O N N N

ARMMUSSIDCHK O O N N N

ARNSAIDCHK O O O N N

ARMPAMCHK O O O O N

ARPBHACHK O O O N N

ARSUBSYSIDCHK O O O N O

ARMECIDCHK O O O N N

RVALIDCHK O O O O O

RREADYCHK O O O O O

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

267

Chapter B1. Interface classes
B1.3. Parity check signal matrix

Table B1.3 – Continued from previous page

Signal AXI5 ACE5-
Lite

ACE5-
LiteDVM

ACE5-
LiteACP

AXI5-
Lite

RIDCHK O O O O O

RDATACHK O O O O O

RTAGCHK O O O N N

RRESPCHK O O O O O

RLASTCHK O O O O N

RCHUNKCHK O O O O N

RUSERCHK O O O O O

RPOISONCHK O O O O O

RTRACECHK O O O O O

RLOOPCHK O O O N N

ACVALIDCHK O N O N N

ACREADYCHK O N O N N

ACADDRCHK O N O N N

ACVMIDEXTCHK O N O N N

ACTRACECHK O N O N N

CRVALIDCHK O N O N N

CRREADYCHK O N O N N

CRTRACECHK O N O N N

VAWQOSACCEPTCHK O O O N N

VARQOSACCEPTCHK O O O N N

AWAKEUPCHK O O O O O

ACWAKEUPCHK O N O N N

SYSCOREQCHK O N O N N

SYSCOACKCHK O N O N N

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

268

Chapter B1. Interface classes
B1.4. Property matrix

B1.4 Property matrix

A list of all properties is shown in Table B1.4.

The table shows the document issue in which the property was introduced and all legal values for the property.
There is a column for each interface class which shows the legal values of that property for that interface class. A
dash means there are no constraints on the property value.

Note that for User signals and User Loopback signals, the maximum width values are a recommendation rather
than a rule. See A13.5 User defined signaling and A13.4 User Loopback signaling for more information.

Table B1.4: Summary of interface property constraints

Property Issue Values AXI5 ACE5-
Lite

ACE5-
LiteDVM

ACE5-
LiteACP

AXI5-
Lite

ADDR_WIDTH H 1..64 - - - - -

ARSNOOP_WIDTH J 0, 4 - - - - 0

Atomic_Transactions F True, False - - - False False

AWCMO_WIDTH J 0, 2, 3 - - - 0 0

AWSNOOP_WIDTH J 0, 4, 5 - - - - 0

BRESP_WIDTH J 0, 2, 3 - - - - -

BURST_Present J True, False - - - False False

Busy_Support J True, False - - - False False

Cache_Line_Size K 16, 32, 64, 128, 256,
512, 1024, 2048

- - - - -

CACHE_Present J True, False - - - - False

Cache_Stash_Transactions F True, Basic, False - - - - False

Check_Type F Odd_Parity_Byte_All,
Odd_Parity_Byte_Data,
False

- - - - -

CMO_On_Read G True, False - - - False False

CMO_On_Write G True, False - - - False False

Coherency_Connection_Signals F True, False - False - False False

Consistent_DECERR H True, False - - - - True

DATA_WIDTH H 8, 16, 32, 64, 128, 256,
512, 1024

- - - 128 -

DeAllocation_Transactions F True, False - - - False False

Device_Normal_Independence K True, False - - - - -

DVM_Message_Support H Receiver, False - False Receiver False False

DVM_v8 E True, False - False - False False

DVM_v8.1 F True, False - False - False False

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

269

Chapter B1. Interface classes
B1.4. Property matrix

Table B1.4 – Continued from previous page

Property Issue Values AXI5 ACE5-
Lite

ACE5-
LiteDVM

ACE5-
LiteACP

AXI5-
Lite

DVM_v8.4 H True, False - False - False False

DVM_v9.2 J True, False - False - False False

Exclusive_Accesses H True, False - - - False False

Fixed_Burst_Disable K True, False - - - False False

ID_R_WIDTH H 0..32 - - - - -

ID_W_WIDTH H 0..32 - - - - -

InvalidateHint_Transaction J True, False - - - False False

LEN_Present J True, False - - - - False

LOOP_R_WIDTH H 0..8 - - - 0 0

LOOP_W_WIDTH H 0..8 - - - 0 0

Loopback_Signals F True, False - - - False False

Max_Transaction_Bytes H 64, 128, 256, 512,
1024, 2048, 4096

- - - - -

MMUFLOW_Present J True, False - - False False False

MEC_Support K True, False - - - False False

MECID_WIDTH K 0..16 - - - 0 0

MPAM_Support K MPAM_9_1,
MPAM_12_1, False

- - - - False

MPAM_WIDTH K 0, 11, 12, 14, 15 - - - - 0

MTE_Support K Standard, Simplified,
Basic, False

- - Basic,
False

False False

Multi_Copy_Atomicity E True, False - - - - -

NSAccess_Identifiers F True, False - - - False False

Ordered_Write_Observation E True, False - - - - -

PBHA_Support J True, False - - - False False

PROT_Present J True, False - - - - -

Persist_CMO F True, False - - - False False

Poison F True, False - - - - -

Prefetch_Transaction H True, False - - - False False

QoS_Accept F True, False - - - False False

QOS_Present J True, False - - - False False

RCHUNKNUM_WIDTH J 0, 1, 5, 6, 7, 8 - - - - 0

RCHUNKSTRB_WIDTH J 0, 1, 2, 4, 8 - - - - 0

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

270

Chapter B1. Interface classes
B1.4. Property matrix

Table B1.4 – Continued from previous page

Property Issue Values AXI5 ACE5-
Lite

ACE5-
LiteDVM

ACE5-
LiteACP

AXI5-
Lite

Read_Data_Chunking G True, False - - - - False

Read_Interleaving_Disabled G True, False - - - - False

REGION_Present J True, False - - - False False

Regular_Transactions_Only H True, False - - - False False

RLAST_Present J True, False - - - - False

RME_Support J True, False - - - False False

RRESP_WIDTH J 0, 2, 3 - - - - -

SECSID_WIDTH J 0, 1, 2 - - 0 0 0

Shareable_Cache_Support J True, False - - False False False

Shareable_Transactions H True, False - True True True False

SID_WIDTH H 0..32 - - 0 0 0

SIZE_Present J True, False - - - False -

SSID_WIDTH H 0..20 - - 0 0 0

STASHLPID_Present J True, False - - - - False

STASHNID_Present J True, False - - - - False

SUBSYSID_WIDTH J 0..8 - - - 0 -

Trace_Signals F True, False - - - - -

Unique_ID_Support G True, False - - - - -

UnstashTranslation_Transaction J True, False - - False False False

Untranslated_Transactions F v3, v2, v1, True, False - - False False False

USER_DATA_WIDTH H 0..DATA_WIDTH/2 - - - - -

USER_REQ_WIDTH H 0..128 - - - - -

USER_RESP_WIDTH H 0..16 - - - - -

WLAST_Present J True, False - - - - False

WSTRB_Present J True, False - - - - -

Wakeup_Signals F True, False - - - - -

Write_Plus_CMO H True, False - - - False False

WriteDeferrable_Transaction J True, False - - - False False

WriteZero_Transaction H True, False - - - False False

WriteNoSnoopFull_Transaction K True, False - - - False False

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

271

Chapter B2
Summary of ID constraints

The following restrictions on ID usage are specified in this document.

Must use an ID that is unique in-flight:

• Atomic transactions

• Prefetch transactions

• WriteZero transactions

• WriteDeferrable transactions

• InvalidateHint transactions

• Read transactions with data chunking enabled

• Transactions which transport MTE tags

• UnstashTranslation transactions

Must not use the same ID for in-flight transactions:

• DVM Complete and non-DVM Complete transactions

• StashOnce and non-StashOnce transactions

• StashTranslation and non-StashTranslation transactions

Must use the same ID:

• Multiple outstanding requests that require ordering between them.

• Transactions in an exclusive access pair.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

272

Chapter B3
Revisions

This appendix describes the technical changes between released issues of this specification.

It contains the following sections:

• B3.1 Differences between Issue H.c and Issue J

• B3.2 Differences between Issue J and Issue K

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

273

Chapter B3. Revisions
B3.1. Differences between Issue H.c and Issue J

B3.1 Differences between Issue H.c and Issue J

Feature Change Detail

AXI3, AXI4, AXI4-Lite
interfaces

Removal AXI3, AXI4, and AXI4-Lite content is removed from the specification.
These interface types are not recommended for new designs and have
been superseded by the AXI5 interface. Removed content can be
accessed by downloading earlier versions of this specification.

ACE and ACE5
interfaces

Removal ACE and ACE5 content is removed from the specification. AMBA CHI
is recommended for fully coherent agents and is actively supported.

ACE5-Lite,
ACE5-LiteDVM,
ACE5-LiteACP, and
AXI5-Lite interfaces

Update ACE5-Lite, ACE5-LiteDVM, ACE5-LiteACP, and AXI5-Lite interfaces
are described through constraints on property values and signal
presence.

AXI5 interface New feature All optional features in this specification are now applicable to AXI5
class interfaces. AXI5 is expected to be used for general-purpose
interfaces.

Caching shareable lines New feature Support for storing shareable lines in a system cache.

Cache stashing New feature There is an additional Basic option for cache stashing to support
interfaces which use only a sub-set of the cache stashing protocol.

Invalidate hint New feature InvalidateHint transaction, which can be used by an agent when it is
finished working with a data set and that data might be allocated in a
downstream cache.

WriteDeferrable
transaction

New feature A 64-byte atomic store operation that might not be accepted by the
Subordinate.

Realm Management
Extension (RME)

New feature Enhanced memory protection.

DVM v9.2 New feature New messages to support the Armv9.2 architecture.

Untranslated transactions New feature Version 3 adds support for mixing translated and untranslated
transactions.

New feature UnstashTranslation transaction, used as a deallocation hint for an
address translation cache.

Page-based Hardware
Attributes (PBHA)

New feature 4-bit descriptors associated with a translation table entry that can be
annotated onto a transaction request.

Subsystem Identifier New feature An additional identifier that can be added to transaction requests to
indicate from which subsystem they originate.

Subordinate busy New feature Response signal that indicates the level of activity of a Subordinate.

Unique ID indicator Clarification Added rules for the Unique ID Indicator and Atomic transactions that
include read and write responses.

Correction BIDUNQ is not required to follow AWIDUNQ for non-Completion
write responses such as Persist and MTE Match.

Memory Tagging
Extension (MTE)

Clarification A WritePtlCMO or WriteFullCMO with AWTAGOP Transfer must be
Non-shareable. This is because a WriteUnique with AWTAGOP of
Transfer is not permitted.

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

274

Chapter B3. Revisions
B3.1. Differences between Issue H.c and Issue J

Table B3.1 – Continued from previous page

Feature Change Detail

Clarification Transactions that carry MTE tags must not cross a cache line boundary.

Additional
requirement

Read transactions with the MTE opcode of Fetch must be Regular.

Enhancement The text describing MTE and Poison is enhanced with additional
guidance.

Prefetch transaction Clarification A Prefetch request must not be used to signal that a line can be fetched
into a managed or visible cache.

Wakeup signals Clarification It is permitted for Wakeup signals to be driven from a glitch-free OR
tree if that implementation is safe for asynchronous sampling.

Multi-copy atomicity Update The requirements for multi-copy atomicity are updated for the Armv8
architecture.

Exclusive accesses Update New signals are added to the rules for an exclusive sequence.

Clarification The requirements for AxCACHE in an exclusive access have been
redefined to be easier to understand.

Read response Clarification For read responses where data is not required to be valid, the Manager
might still sample the RDATA value so the Subordinate should not rely
on the response to hide sensitive data.

Interface parity Enhancement The description regarding how to handle missing signals in CHK groups
is enhanced to cover the case where either the input or output is missing.

Signal matrix Correction The ARDOMAIN and AWDOMAIN entries in the signal matrix are
corrected to be dependent on the Shareable_Transactions property and
marked as Configurable rather than Mandatory.

Cache stashing Correction "AWSTASHLPIDEN must be driven to all zeros when
AWSTASHLPIDEN is deasserted"
is corrected to:
"When AWSTASHLPIDEN is LOW, AWSTASHLPID is invalid and must
be zero"

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

275

Chapter B3. Revisions
B3.2. Differences between Issue J and Issue K

B3.2 Differences between Issue J and Issue K

Feature Change Detail

Memory Encryption
Contexts (MEC)

New feature The Memory Encryption Contexts (MEC) feature is added to the Realm
Management Extension (RME).

MPAM extension Enhancement A new configuration option is defined for MPAM to support a wider
PartID field.

MTE extension Enhancement A new configuration option is defined for MTE to support components
which transport tags but do not support the Match operation.

Fixed_Burst_Disable Enhancement A new property is defined that allows components to not support a Burst
type of FIXED.

Cache_Line_Size Enhancement A new property is defined to capture the cache line size of an interface.

WriteNoSnoopFull
Transaction

Enhancement A new WriteNoSnoopFull_Transaction property is defined to enable an
interface to support WriteNoSnoopFull without having to support all
transactions related to caching shareable lines.

Write channel
dependency

Clarification It is clarified that a Subordinate must not block acceptance of data-less
write requests due to transactions with leading write data.

Length attribute Clarification It is clarified that Size x Length defines that maximum number of bytes
in a transaction rather than the actual number in all cases.

Transaction equations Correction The Data_Bytes variable is corrected to be DATA_WIDTH/8.

Transaction pseudocode Clarification Variable names changed to align with earlier sections.

Ordering between
Device and Normal
Non-cacheable

Enhancement A property Device_Normal_Independence is added to control whether
Device and Normal Non-cacheable requests are required to be ordered
against each other.

CACHE_Present Clarification It is clarified that the CACHE_Present property determines whether
AxCACHE signals are present on an interface.

Cache stash property Correction In the paragraph text and Table A9.19, the Cache_Stash_Transactions
property was incorrectly referred to as Stash_Transactions.

Max_Transaction_Bytes Clarification Clarification on the meaning of the Max_Transaction_Bytes property.

Write data strobes Clarification Clarification of the rules for WSTRB.

Read data interleaving Clarification It is clarified that read data transfers in Atomic transactions can be
interleaved.

Modifiable transactions Clarification It is clarified that AxNSE must not be modified, along with AxPROT.

Exclusive accesses Clarification It is clarified that AWATOP must not be Match for exclusive writes.

PREFETCHED response Change The recommendation for PREFETCHED response is changed to be:
within a cache line, the PREFETCHED response is used for all data
transfers or no data transfers. This aligns better with the CHI
DataSource response.

Caching shareable lines Clarification It is clarified that clean evictions of Shareable lines must not be written
back to memory.

Clarification In Table A9.8, CacheStash* is replaced with StashOnce*.

Continued on next page

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

276

Chapter B3. Revisions
B3.2. Differences between Issue J and Issue K

Table B3.2 – Continued from previous page

Feature Change Detail

Memory Tagging Clarification A footnote is added to Table A13.13 to clarify that a WriteNoSnoop
with tag Match must not be Exclusive.

Correction In Table A13.12, the value for Tags match is corrected to be 0b11, not
0b10.

User Loopback signaling Clarification Clarification of the rules for LOOP_x_WIDTH properties.

MMUFLOW_Present
property default

Correction The default value for MMUFLOW_Present is corrected to be False to
make it compatible with the default for the Untranslated_Transactions
property.

StashTranslation and
UnstashTranslation

Enhancement StashTranslation and UnstashTranslation are enhanced to enable the
stash or unstash of Granule Protection Table entries.

DVM messages Clarification It is clarified that the AC and CR channels are ordered.

Correction The mapping for the 2nd part of a PICI message was incorrect in Table
A15.22. ACADDR[11:4] should be PA[11:4].

Poison Correction The width of WPOISON and RPOISON is corrected to be
ceil(DATA_WIDTH/64) rather than DATA_WIDTH/64.

Interface parity for
CRTRACE

Correction In Table A17.4, the enable signal for CRTRACECHK was indicated as
ACVALID when it should be CRVALID.

Loopback check signal
width

Change In Table A17.4, the width of check signals for Loopback signals is
changed from 1 to ceil(LOOP_x_WIDTH) to cover cases where the
maximum recommendation of 8 for loopback width is exceeded.

ACE5-LiteDVM
interface

Correction The list of signals no longer supported in ACE5-LiteDVM is corrected
to ACSNOOP, ACPROT and CRRESP.

Correction DVM_Message_Support must be Receiver for ACE5-LiteDVM
interfaces. Therefore the snoop channels are mandatory rather than
optional.

BROADCAST* signals Correction In the signal matrix Table B1.2, the BROADCAST* signal presence was
listed as dependent on a Broadcast_Signals property which was not
defined. Presence conditions for these signals has now been removed.

Parity check signal
matrix

Clarification A matrix of parity check signals vs interface type is added for clarity.

Read Interleaving
Disabled and AXI5-Lite

Correction Read_Interleaving_Disabled was incorrectly constrained to True for
AXI5-Lite interfaces, it should be False.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

277

Part C
Glossary

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

278

Chapter C1
Glossary

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

279

Chapter C1. Glossary

Aligned

A data item stored at an address that is divisible by the highest power of 2 that divides into its size in bytes.
Aligned halfwords, words and doublewords therefore have addresses that are divisible by 2, 4 and 8 respectively.

An aligned access is one where the address of the access is aligned to the size of each element of the access.

At approximately the same time

Two events occur at approximately the same time if a remote observer might not be able to determine the order in
which they occurred.

Barrier

An operation that forces a defined ordering of other actions.

Big-endian memory

Means that the most significant byte (MSB) of the data is stored in the memory location with the lowest address.

Blocking

Describes an operation that prevents following actions from continuing until the operation completes.

Branch prediction

Is where a processor selects a future execution path to fetch along. For example, after a branch instruction, the
processor can choose to speculatively fetch either the instruction following the branch or the instruction at the
branch target.

Byte

An 8-bit data item.

Cache

Any cache, buffer, or other storage structure in a caching Manager that can hold a copy of the data value for a
particular address location.

Cache hit

A memory access that can be processed at high speed because the data it addresses is already in the cache.

Cache line

The basic unit of storage in a cache. Its size in words is always a power of two. A cache line must be aligned to the
size of the cache line.

Cache miss

A memory access that cannot be processed at high speed because the data it addresses is not in the cache.

ceil()

A function that returns the lowest integer value that is equal to or greater than the input to the function.

Coherent

Data accesses from a set of observers to a memory location are coherent accesses to that memory location by the
members of the set of observers are consistent with there being a single total order of all writes to that memory
location by all members of the set of observers.

Component

A distinct functional unit that has at least one AMBA interface. Component can be used as a general term for
Manager, Subordinate, peripheral, and interconnect components.

Deprecated

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

280

Chapter C1. Glossary

Something that is present in the specification for backwards compatibility. Whenever possible you must avoid
using deprecated features. These features might not be present in future versions of the specification.

Downstream

An AXI transaction operates between a Manager component and one or more Subordinate components, and can
pass through one or more intermediate components. At any intermediate component, for a given transaction,
downstream means between that component and a destination Subordinate component, and includes the
destination Subordinate component.

Downstream and upstream are defined relative to the transaction as a whole, not relative to individual data flows
within the transaction.

Downstream cache

A downstream cache is defined from the perspective of an initiating Manager. A downstream cache for a Manager
is one that it accesses using the fundamental AXI transaction channels. An initiating Manager can allocate cache
lines into a downstream cache.

Endianness

An aspect of the system memory mapping.

Full coherency

A fully coherent Manager can share data with other Managers and allocate that data in its local caches; it can
snoop and be snooped.

I/O coherency

An I/O coherent Manager can share data with other Managers but cannot allocate that data in its local caches; it
can snoop but not be snooped.

IMPLEMENTATION DEFINED

Means that the behavior is not defined by this specification, but must be defined and documented by individual
implementations.

in a timely manner

The protocol cannot define an absolute time within which something must occur. However, in a sufficiently idle
system, it will make progress and complete without requiring any explicit action.

Initiating Manager

A Manager that issues a transaction that starts a sequence of events. When describing a sequence of transactions,
the term initiating Manager distinguishes the Manager that triggers the sequence of events from any snooped
Manager that is accessed as a result of the action of the initiating Manager.

Initiating Manager is a temporal definition, meaning it applies at particular points in time, and typically is used
when describing sequences of events. A Manager that is an initiating Manager for one sequence of events can be a
snooped Manager for another sequence of events.

Interconnect component

A component with more than one AMBA interface that connects one or more Manager components to one or more
Subordinate components.

An interconnect component can be used to group together either:

• A set of Managers so that they appear as a single Manager interface.

• A set of Subordinates so that they appear as a single Subordinate interface.

Little-endian memory

Means that the least significant byte (LSB) of the data is stored in the memory location with the lowest address.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

281

Chapter C1. Glossary

Load

The action of a Manager component reading the value held at a particular address location. For a processor, a load
occurs as the result of executing a particular instruction. Whether the load results in the Manager issuing a read
transaction depends on whether the accessed cache line is held in the local cache.

Local cache

A local cache is defined from the perspective of an initiating Manager. A local cache is one that is internal to the
Manager. Any access to the local cache is performed within the Manager.

Main memory

The memory that holds the data value of an address location when no cached copies of that location exist. For any
location, main memory can be out of date with respect to the cached copies of the location, but main memory is
updated with the most recent data value when no cached copies exist.

Main memory can be referred to as memory when the context makes the intended meaning clear.

Manager

An agent that initiates transactions.

Manager component

A component that initiates transactions.

It is possible that a single component can act as both a Manager component and as a Subordinate component.
For example, a Direct Memory Access (DMA) component can be a Manager component when it is initiating
transactions to move data, and a Subordinate component when it is being programmed.

Memory Encryption Contexts (MEC)

Memory Encryption Contexts are configurations of encryption that are associated with areas of memory, assigned
by the MMU.
MEC is an extension to the Arm Realm Management Extension (RME). The RME system architecture requires that
the Realm, Secure, and Root Physical Address Spaces (PAS) are encrypted. The encryption key or encryption
context, used with each of these PASs is global within that PAS. For example, for the Realm PAS, all Realm
memory uses the same encryption context. With MEC this concept is broadened, and for the Realm PAS
specifically, each Realm is allowed to have a unique encryption context. This provides additional defense in depth
to the isolation already provided in RME. MECIDs are identifying tags that are associated with different Memory
Encryption Contexts.

Memory Management Unit (MMU)

Provides detailed control of the part of a memory system that provides address translation. Most of the control is
provided using translation tables that are held in memory, and define the attributes of different regions of the
physical memory map.

Memory Subordinate component

A Memory Subordinate component, or Memory Subordinate, is a Subordinate component with the following
properties:

• A read of a byte from a Memory Subordinate returns the last value written to that byte location.

• A write to a byte location in a Memory Subordinate updates the value at that location to a new value that is
obtained by subsequent reads.

• Reading a location multiple times has no side-effects on any other byte location.

• Reading or writing one byte location has no side-effects on any other byte location.

Observer

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

282

Chapter C1. Glossary

A processor or other Manager component, such as a peripheral device, that can generate reads from or writes to
memory.

Page-based Hardware Attributes (PBHA)

Page Based Hardware Attributes (PBHA) is an optional, implementation defined feature. It allows software to set
up to 4 bits in the translation tables, which are then propagated though the memory system with transactions, and
can be used in the system to control system components. The meaning of the bits is specific to the system design.

Peer cache

A peer cache is defined from the perspective of an initiating Manager. A peer cache for that Manager is one that is
accessed using snoop channels. An initiating Manager cannot allocate cache lines into a peer cache.

Peripheral Subordinate component

A Peripheral Subordinate component is also described as a Peripheral Subordinate. A Peripheral Subordinate
typically has an IMPLEMENTATION DEFINED method of access that is described in the data sheet for the
component. Any access that is not defined as permitted might cause the Peripheral Subordinate to fail, but must
complete in a protocol-correct manner to prevent system deadlock. The protocol does not require continued
correct operation of the peripheral.

In the context of the descriptions in this specification, Peripheral Subordinate is synonymous with peripheral,
peripheral component, peripheral device, and device.

PoS

Point of Serialization. The point through which all transactions to a given address must pass and the order in
which the transactions are processed is determined.

Prefetching

Prefetching refers to speculatively fetching instructions or data from the memory system. In particular, instruction
prefetching is the process of fetching instructions from memory before the instructions that precede them, in
simple sequential execution of the program, have finished executing. Prefetching an instruction does not mean that
the instruction has to be executed.

In this specification, references to instruction or data fetching apply also to prefetching, unless the context
explicitly indicates otherwise.

RAZ/WI, Read-As-Zero, Writes Ignored

Hardware must implement the field as Read-as-Zero, and must ignore writes to the field. Software can rely on the
field reading as all 0s, and on writes being ignored. This description can apply to a single bit that reads as 0, or to a
field that reads as all 0s.

Realm Management Extensions (RME)

The Realm Management Extension (RME) is an extension to the Armv9 A-profile architecture. RME is one
component of the Arm Confidential Compute Architecture (Arm CCA). Together with the other components of the
Arm CCA, RME enables support for dynamic, attestable and trusted execution environments (Realms) to be run
on an Arm PE. RME adds two additional Security states (Root and Realm) and two physical address spaces (Root
and Realm), and provides hardware-based isolation that allows execution contexts to run in different Security
states and share resources in the system.

Snoop filter

A precise snoop filter that is able to track precisely the cache lines that might be allocated within a Manager.

Snooped cache

A hardware-coherent cache on a snooped Manager. That is, it is a hardware-coherent cache that receives snoop
transactions.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

283

Chapter C1. Glossary

The term snooped cache is used in preference to the term snooped Manager when the sequence of events being
described only involves the cache and does not involve any actions or events on the associated Manager.

Snooped Manager

A caching Manager that receives snoop transactions.

Snooped Manager is a temporal definition, meaning it applies at particular points in time, and typically is used
when describing sequences of events. A Manager that is a snooped Manager for one sequence of events can be an
initiating Manager for another sequence of events.

Speculative read

A transaction that a Manager issues when it might not need the transaction to be performed because it already has
a copy of the accessed cache line in its local cache. Typically, a Manager issues a speculative read in parallel with
a local cache lookup. This gives lower latency than looking in the local cache first, and then issuing a read
transaction only if the required cache line is not found in the local cache.

Store

The action of a Manager component changing the value held at a particular address location. For a processor, a
store occurs as the result of executing a particular instruction. Whether the store results in the Manager issuing a
read or write transaction depends on whether the accessed cache line is held in the local cache, and if it is in the
local cache, the state it is in.

Subordinate

An agent that receives and responds to requests.

Subordinate component

A component that receives transactions and responds to them.

It is possible that a single component can act as both a Subordinate component and as a Manager component. For
example, a Direct Memory Access (DMA) component can be a Subordinate component when it is being
programmed and a Manager component when it is initiating transactions to move data.

System Memory Management Unit (SMMU)

A system-level MMU. That is, a system component that provides address translation from a one address space to
another. An SMMU provides one or more of:

• virtual address (VA) to physical address (PA) translation.

• VA to intermediate physical address (IPA) translation.

• IPA to PA translation.

When using the Realm Management Extension (RME), an SMMU can also perform the Granule Protection Check.

Transaction

An AXI Manager initiates an AXI transaction to communicate with an AXI Subordinate. Typically, the transaction
requires information to be exchanged between the Manager and Subordinate on multiple channels. The complete
set of required information exchanges form the AXI transaction.

Translation Lookaside Buffer (TLB)

A memory structure containing the results of translation table walks. TLBs help to reduce the average cost of a
memory access.

Translation table

A table held in memory that defines the properties of memory areas of various sizes from 1KB.

Translation table walk

The process of doing a full translation table lookup.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

284

Chapter C1. Glossary

Unaligned

An unaligned access is an access where the address of the access is not aligned to the size of an element of the
access.

Unaligned memory accesses

Are memory accesses that are not, or might not be, appropriately halfword-aligned, word-aligned, or
doubleword-aligned.

UNPREDICTABLE

In the AMBA AXI Architecture means that the behavior cannot be relied upon.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect.

Upstream

An AXI transaction operates between a Manager component and one or more Subordinate components, and can
pass through one or more intermediate components. At any intermediate component, for a given transaction,
upstream means between that component and the originating Manager component, and includes the originating
Manager component.

Downstream and upstream are defined relative to the transaction as a whole, not relative to individual data flows
within the transaction.

Write-Back cache

A cache in which when a cache hit occurs on a store access, the data is only written to the cache. Data in the cache
can therefore be more up-to-date than data in main memory. Any such data is written back to main memory when
the cache line is cleaned or re-allocated. Another common term for a Write-Back cache is a copy-back cache.

Write-Through cache

A cache in which when a cache hit occurs on a store access, the data is written both to the cache and to main
memory. This is normally done via a write buffer to avoid slowing down the processor.

ARM IHI 0022
Issue K

Copyright © 2003-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

285

	AMBA® AXI Protocol Specification
	Release information
	Proprietary Notice
	AMBA SPECIFICATION LICENCE
	Confidentiality Status
	Product Status
	Web Address
	Inclusive language commitment

	Contents
	Preface
	Intended audience
	Using this specification
	Conventions
	Typographical conventions
	Timing diagrams
	Signals
	Numbers
	Pseudocode descriptions

	Additional reading
	Feedback
	Feedback on this specification

	A Specification
	A1 Introduction
	A1.1 About the AXI protocol
	A1.2 AXI Architecture
	A1.2.1 Channel definition
	A1.2.1.1 Write and read request channels
	A1.2.1.2 Write data channel
	A1.2.1.3 Write response channel
	A1.2.1.4 Read data channel

	A1.2.2 Interface and interconnect
	A1.2.2.1 Typical system topologies

	A1.2.3 Register slices

	A1.3 Terminology
	A1.3.1 AXI components and topology
	A1.3.2 AXI transactions and transfers
	A1.3.3 Caches and cache operation
	A1.3.4 Temporal description

	A2 Signal list
	A2.1 Write channels
	A2.1.1 Write request channel
	A2.1.2 Write data channel
	A2.1.3 Write response channel

	A2.2 Read channels
	A2.2.1 Read request channel
	A2.2.2 Read data channel

	A2.3 Snoop channels
	A2.3.1 Snoop request channel
	A2.3.2 Snoop response channel

	A2.4 Interface level signals
	A2.4.1 Clock and reset signals
	A2.4.2 Wakeup signals
	A2.4.3 QoS Accept signals
	A2.4.4 Coherency Connection signals
	A2.4.5 Interface control signals

	A3 AXI Transport
	A3.1 Clock and reset
	A3.1.1 Clock
	A3.1.2 Reset

	A3.2 Channel handshake
	A3.3 Write and read channels
	A3.3.1 Write request channel (AW)
	A3.3.2 Write data channel (W)
	A3.3.3 Write response channel (B)
	A3.3.4 Read request channel (AR)
	A3.3.5 Read data channel (R)

	A3.4 Relationships between the channels
	A3.5 Dependencies between channel handshake signals
	A3.5.1 Write transaction dependencies
	A3.5.2 Read transaction dependencies

	A3.6 Snoop channels
	A3.6.1 Snoop request channel (AC)
	A3.6.2 Snoop response channel (CR)
	A3.6.3 Snoop transaction dependencies

	A4 AXI Transactions
	A4.1 Transaction request
	A4.1.1 Size attribute
	A4.1.2 Length attribute
	A4.1.3 Maximum number of bytes in a transaction
	A4.1.4 Burst attribute
	FIXED
	INCR (incrementing)
	WRAP (wrapping)
	Fixed_Burst_Disable

	A4.1.5 Transfer address
	Address width

	A4.1.6 Transaction equations
	A4.1.7 Pseudocode description of the transfers
	A4.1.8 Regular transactions

	A4.2 Write and read data
	A4.2.1 Write strobes
	A4.2.2 Narrow transfers
	A4.2.3 Byte invariance
	A4.2.4 Unaligned transfers

	A4.3 Transaction response
	A4.3.1 Write response
	A4.3.2 Read response
	A4.3.3 Subordinate Busy indicator

	A5 Request attributes
	A5.1 Subordinate types
	Memory Subordinate
	Peripheral Subordinate

	A5.2 Memory Attributes
	A5.2.1 Bufferable, AxCACHE[0]
	A5.2.2 Modifiable, AxCACHE[1]
	Non-modifiable transactions
	Modifiable transactions

	A5.2.3 Allocate and Other Allocate, AxCACHE[2], and AxCACHE[3]

	A5.3 Memory types
	A5.3.1 Memory type requirements
	Device Non-bufferable
	Device Bufferable
	Normal Non-cacheable Non-bufferable
	Normal Non-cacheable Bufferable
	Write-Through No-Allocate
	Write-Through Read-Allocate
	Write-Through Write-Allocate
	Write-Through Read and Write-Allocate
	Write-Back No-Allocate
	Write-Back Read-Allocate
	Write-Back Write-Allocate
	Write-Back Read and Write-Allocate

	A5.3.2 Mismatched memory attributes
	A5.3.3 Changing memory attributes
	A5.3.4 Transaction buffering
	A5.3.5 Example use of Device memory types

	A5.4 Protocol errors
	A5.4.1 Software protocol error
	A5.4.2 Hardware protocol error

	A5.5 Memory protection and the Realm Management Extension
	Unprivileged / privileged
	Security attribute
	Instruction / data

	A5.6 Memory Encryption Contexts
	A5.6.1 MEC signaling
	A5.6.2 MECID usage

	A5.7 Multiple region interfaces
	A5.7.1 Region identifier signaling
	A5.7.2 Using the region identifier

	A5.8 QoS signaling
	A5.8.1 QoS identifiers
	Using the QoS identifiers

	A5.8.2 QoS acceptance indicators

	A6 Transaction identifiers and ordering
	A6.1 Transaction identifiers
	A6.1.1 Transaction ID signals

	A6.2 Unique ID indicator
	A6.3 Request ordering
	A6.3.1 Memory locations and Peripheral regions
	A6.3.2 Device and Normal requests
	Device
	Normal

	A6.3.3 Observation and completion definitions
	Write completion response
	Read completion response

	A6.3.4 Manager ordering guarantees
	Observability guarantees before a completion response is received
	Observability guarantees from a completion response
	Response ordering guarantees

	A6.3.5 Subordinate ordering requirements
	Peripheral locations
	Memory locations
	Response ordering requirements

	A6.3.6 Interconnect ordering requirements
	A6.3.7 Response before the endpoint
	Early read response
	Early write response

	A6.3.8 Ordering between requests with different memory types
	A6.3.9 Ordered write observation

	A6.4 Interconnect use of transaction identifiers
	A6.5 Write data and response ordering
	A6.6 Read data ordering
	A6.6.1 Read data interleaving
	A6.6.2 Read data chunking
	A6.6.2.1 Read data chunking signaling
	A6.6.2.2 Read data chunking protocol rules
	A6.6.2.3 Interoperability
	A6.6.2.4 Chunking examples

	A7 Atomic accesses
	A7.1 Single-copy atomicity size
	A7.2 Multi-copy write atomicity
	A7.3 Exclusive accesses
	A7.3.1 Exclusive access sequence
	A7.3.2 Exclusive access from the perspective of the Manager
	A7.3.3 Exclusive access restrictions
	A7.3.4 Exclusive access from the perspective of the Subordinate

	A7.4 Atomic transactions
	A7.4.1 Overview
	AtomicStore
	AtomicLoad
	AtomicSwap
	AtomicCompare

	A7.4.2 Atomic transaction operations
	A7.4.3 Atomic transactions attributes
	For AtomicStore, AtomicLoad, and AtomicSwap
	For AtomicCompare

	A7.4.4 ID use for Atomic transactions
	A7.4.5 Request attribute restrictions for Atomic transactions
	A7.4.6 Atomic transaction signaling
	A7.4.7 Transaction structure
	A7.4.8 Response signaling
	A7.4.9 Atomic transaction dependencies
	A7.4.10 Support for Atomic transactions
	Manager support
	Subordinate support
	Interconnect support

	A8 Request Opcodes
	A8.1 Opcode signaling
	A8.2 AWSNOOP encodings
	A8.3 ARSNOOP encodings

	A9 Caches
	A9.1 Caching in AXI
	A9.2 Cache line size
	A9.3 Cache coherency and Domains
	A9.3.1 System Domain
	A9.3.2 Non-shareable Domain
	A9.3.3 Shareable Domain
	A9.3.4 Domain signaling
	A9.3.5 Domain consistency
	A9.3.6 Domains and memory types

	A9.4 I/O coherency
	A9.5 Caching Shareable lines
	A9.5.1 Opcodes to support reading and writing full cache lines
	ReadClean
	ReadShared
	WriteNoSnoopFull
	WriteUniqueFull
	WriteBackFull
	WriteEvictFull

	A9.5.2 Configuration of Shareable cache support

	A9.6 Prefetch transaction
	A9.6.1 Rules for the prefetch transaction
	A9.6.2 Response for prefetched data

	A9.7 Cache Stashing
	A9.7.1 Stash transaction Opcodes
	WriteUniquePtlStash
	WriteUniqueFullStash
	StashOnceShared
	StashOnceUnique

	A9.7.2 Stash transaction signaling
	A9.7.3 Stash request Domain
	A9.7.4 Stash target identifiers
	A9.7.5 Transaction ID for stash transactions
	A9.7.6 Support for stash transactions

	A9.8 Deallocating read transactions
	A9.8.1 Deallocating read Opcodes
	ReadOnceCleanInvalid (ROCI)
	ReadOnceMakeInvalid (ROMI)

	A9.8.2 Rules and recommendations

	A9.9 Invalidate hint
	A9.9.1 Invalidate Hint signaling
	A9.9.2 Invalidate Hint support

	A10 Cache maintenance
	A10.1 Cache Maintenance Operations
	CleanShared (CS)
	CleanSharedPersist (CSP)
	CleanSharedDeepPersist (CSDP)
	CleanInvalid (CI)
	CleanInvalidPoPA (CIPA)
	MakeInvalid (MI)

	A10.2 Actions on receiving a CMO
	A10.3 CMO request attributes
	A10.4 CMO propagation
	A10.5 CMOs on the write channels
	A10.6 Write with CMO
	A10.6.1 Attributes for write with CMO
	A10.6.2 Propagation of write with CMO
	A10.6.3 Response to write with CMOs
	A10.6.4 Example flow with a write plus CMO

	A10.7 CMOs on the read channels
	A10.8 CMOs for Persistence
	A10.8.1 Point of Persistence and Deep Persistence
	A10.8.2 Persistent CMO (PCMO) transactions
	CleanSharedPersist (CSP)
	CleanSharedDeepPersist (CSDP)

	A10.8.3 PCMO propagation
	A10.8.4 PCMOs on write channels
	PCMO request on the AW channel
	PCMO response on the B channel
	Example PCMO using write channels

	A10.8.5 PCMOs on read channels

	A10.9 Cache Maintenance and Realm Management Extension
	A10.9.1 CMO to PoPA
	A10.9.2 CMO to PoPA propagation

	A10.10 Processor cache maintenance instructions
	A10.10.1 Unpredictable behavior with software cache maintenance

	A11 Additional request qualifiers
	A11.1 Non-secure Access Identifiers (NSAID)
	A11.1.1 NSAID signaling
	A11.1.2 Caching and NSAID

	A11.2 Page-based Hardware Attributes (PBHA)
	A11.2.1 PBHA values

	A11.3 Subsystem Identifier
	A11.3.1 Subsystem ID usage

	A12 Other write transactions
	A12.1 WriteZero Transaction
	A12.2 WriteDeferrable Transaction
	A12.2.1 WriteDeferrable transaction support
	A12.2.2 WriteDeferrable signaling
	A12.2.3 Response to a WriteDeferrable request

	A13 System monitoring, debug, and user extensions
	A13.1 Memory System Resource Partitioning and Monitoring (MPAM)
	A13.1.1 MPAM signaling
	A13.1.2 MPAM fields
	A13.1.3 MPAM component interactions
	Manager components
	Interconnect components
	Subordinate components

	A13.2 Memory Tagging Extension (MTE)
	A13.2.1 MTE support
	A13.2.2 MTE signaling
	A13.2.3 Caching tags
	A13.2.4 Transporting tags
	A13.2.5 Reads with tags
	A13.2.6 Writes with tags
	Completion response
	Match response
	Combined response

	A13.2.7 Memory tagging interoperability
	A13.2.8 MTE and Atomic transactions
	A13.2.9 MTE and Prefetch transactions
	A13.2.10 MTE and Poison

	A13.3 Trace signals
	A13.4 User Loopback signaling
	A13.5 User defined signaling
	A13.5.1 Configuration
	A13.5.2 User signals
	A13.5.3 Usage considerations

	A14 Untranslated Transactions
	A14.1 Introduction to Distributed Virtual Memory
	A14.2 Support for untranslated transactions
	A14.3 Untranslated transaction signaling
	A14.4 Translation identifiers
	A14.4.1 Secure Stream Identifier (SECSID)
	A14.4.2 StreamID (SID)
	A14.4.3 SubstreamID (SSID)
	A14.4.4 PCIe considerations

	A14.5 Translation fault flows
	A14.5.1 Stall flow
	A14.5.2 ATST flow
	A14.5.3 NoStall flow
	A14.5.4 PRI flow

	A14.6 Untranslated transaction qualifier
	A14.7 StashTranslation Opcode
	A14.8 UnstashTranslation Opcode

	A15 Distributed Virtual Memory messages
	A15.1 Introduction to DVM transactions
	A15.2 Support for DVM messages
	A15.3 DVM messages
	A15.3.1 DVM message fields
	TLB Invalidate level hint
	Security field
	ASID field
	VMID field

	A15.3.2 TLB Invalidate messages
	TLB Invalidate by Range
	GPT TLB Invalidate

	A15.3.3 Branch Predictor Invalidate messages
	A15.3.4 Instruction cache invalidations
	Physical Instruction Cache Invalidate
	Virtual Instruction Cache Invalidate

	A15.3.5 Synchronization message
	A15.3.6 Hint message

	A15.4 Transporting DVM messages
	A15.4.1 Signaling for DVM messages
	Rules for snoop channels

	A15.4.2 Address widths in DVM messages
	A15.4.3 Mapping message fields to signals

	A15.5 DVM Sync and Complete
	A15.6 Coherency Connection signaling
	A15.6.1 Coherency Connection Handshake

	A16 Wake-up signaling
	A16.1 About Wake-up signals
	A16.2 AWAKEUP rules and recommendations
	A16.2.1 AWAKEUP and Coherency Connection signaling

	A16.3 ACWAKEUP rules and recommendations

	A17 Interface and data protection
	A17.1 Data protection using Poison
	A17.2 Parity protection for data and interface signals
	A17.2.1 Configuration of parity protection
	A17.2.2 Error detection behavior
	A17.2.3 Parity check signals

	B Appendices
	B1 Interface classes
	B1.1 Summary of interface classes
	B1.1.1 AXI5
	B1.1.2 ACE5-Lite
	B1.1.3 ACE5-LiteDVM
	B1.1.4 ACE5-LiteACP
	B1.1.5 AXI5-Lite

	B1.2 Signal matrix
	B1.3 Parity check signal matrix
	B1.4 Property matrix

	B2 Summary of ID constraints
	B3 Revisions
	B3.1 Differences between Issue H.c and Issue J
	B3.2 Differences between Issue J and Issue K

	C Glossary
	C1 Glossary

